cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006106 Gaussian binomial coefficient [ n,3 ] for q = 4.

Original entry on oeis.org

1, 85, 5797, 376805, 24208613, 1550842085, 99277752549, 6354157930725, 406672215935205, 26027119554103525, 1665737215212030181, 106607206793565997285, 6822861635108183247077, 436663151052043168024805, 27946441769812674154891493
Offset: 3

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Magma
    r:=3; q:=4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 07 2016
  • Mathematica
    Table[QBinomial[n, 3, 4], {n, 3, 20}] (* Vincenzo Librandi, Aug 07 2016 *)
  • Sage
    [gaussian_binomial(n,3,4) for n in range(3,15)] # Zerinvary Lajos, May 27 2009
    

Formula

G.f.: x^3/((1-x)*(1-4*x)*(1-16*x)*(1-64*x)). - Simon Plouffe in his 1992 dissertation
a(n) = Product_{i=1..3} (4^(n-i+1)-1)/(4^i-1), by definition. - Vincenzo Librandi, Aug 07 2016