cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006137 a(n) = 1 + n/2 + 9*n^2/2.

Original entry on oeis.org

1, 6, 20, 43, 75, 116, 166, 225, 293, 370, 456, 551, 655, 768, 890, 1021, 1161, 1310, 1468, 1635, 1811, 1996, 2190, 2393, 2605, 2826, 3056, 3295, 3543, 3800, 4066, 4341, 4625, 4918, 5220, 5531, 5851, 6180, 6518, 6865, 7221, 7586, 7960, 8343, 8735, 9136, 9546
Offset: 0

Views

Author

Keywords

Comments

72*a(n) - 71 = (18*n+1)^2 = A161705(n)^2 is a perfect square. - Klaus Purath, Jan 14 2022

Crossrefs

Programs

  • Mathematica
    Table[1+n/2+9 n^2/2,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{1,6,20},40] (* Harvey P. Dale, Oct 05 2012 *)
  • PARI
    a(n)=1+n/2+9*n^2/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = a(n-1) + 9*n - 4 (with a(0)=1). - Vincenzo Librandi, Nov 18 2010
From Klaus Purath, Jan 14 2022: (Start)
a(n) = A276819(n) + n.
A003215(a(n)) - A003215(a(n)-3) = A002378(9*n). (End)
From Stefano Spezia, Dec 25 2022: (Start)
O.g.f.: (1 + 3*x+ 5*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(2 + 10*x + 9*x^2)/2. (End)