cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006157 a(n+1) = (n-1)*a(n) + n*n!.

Original entry on oeis.org

1, 5, 28, 180, 1320, 10920, 100800, 1028160, 11491200, 139708800, 1836172800, 25945920000, 392302310400, 6320426112000, 108101081088000, 1956280854528000, 37347179950080000, 750144785854464000, 15813863053148160000, 349121438173347840000
Offset: 2

Views

Author

Keywords

Comments

Number of ascending runs of length at least two in all permutations of [n]. Example: a(3)=5 because we have (123), (13)2, 3(12), 2(13), (23)1 and 321, where the ascending runs of length at least 2 are shown between parentheses. - Emeric Deutsch and Ira M. Gessel, Sep 07 2004

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A014484.

Programs

  • Magma
    [(2*n-1)*Factorial(n)/6: n in [2..40]]; // G. C. Greubel, Jan 08 2025
    
  • Mathematica
    Table[(2n-1)/6*n!,{n,2,30}] (* Harvey P. Dale, Jan 06 2014 *)
  • Python
    def A006157(n): return (2*n-1)*factorial(n)//6
    print([A006157(n) for n in range(2,41)]) # G. C. Greubel, Jan 08 2025

Formula

a(n) = (2n-1)/6 * n!.
E.g.f.: x^2*(3-x)/(6*(1-x)^2). - Emeric Deutsch and Ira M. Gessel, Sep 07 2004

Extensions

More terms from Harvey P. Dale, Jan 06 2014