A006172 a(n) = 1 + F(2*n+1) + (-1)^n*L(n).
4, 2, 9, 10, 42, 79, 252, 582, 1645, 4106, 11070, 28459, 75348, 195898, 515073, 1344906, 3526786, 9223895, 24163596, 63236638, 165595269, 433469962, 1134942774, 2971150995, 7778845732, 20364843314, 53316562617, 139583423242, 365436006810, 956720876191, 2504732642460
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- W. E. Greig, On generalized G_{j,k} numbers, Fib. Quart., 16 (1978), 166-170.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (3,1,-7,5,-1).
Programs
-
Maple
FL := proc(n) local a,p; a := (1+sqrt(5))/2; p := m -> a^m - (-a)^(-m); 1 + (p(n-1) + p(n+1) + p(2*n-1))/sqrt(5) end: A006172 := n -> FL(-n): seq(round(evalf(A006172(n),32)), n=0..30); # Peter Luschny, Mar 09 2015
-
Mathematica
Table[1+Fibonacci[2n+1]+(-1)^n*(Fibonacci[n+1]+Fibonacci[n-1]), {n, 0, 30}] (* recall that L_n = F_{n+1}+ F_{n-1}. - Russell Jay Hendel, Feb 25 2015 *) Series[1/(1-x)+ (2+x)/(1+x-x^2)+(1-x)/(1-3x+x^2), {x, 0, 30}] (* Russell Jay Hendel, Feb 25 2015 *) LinearRecurrence[{3, 1, -7, 5, -1}, {4, 2, 9, 10, 42}, 31] (* or *) CoefficientList[ Series[(4 - 10x - x^2 + 9x^3 - 3x^4)/(1 - 3x - x^2 + 7x^3 - 5x^4 + x^5), {x, 0, 30}], x] (* Robert G. Wilson v, Mar 01 2015 *)
-
PARI
\ps {31}; C(x) = 1/(1-x); L(x) = (2+x)/(1+x-x^2); B(x) = (1-x)/(1-3*x+x^2); H(x) = C(x)+L(x)+B(x); Ser(H(x),x) Vec(Ser(H(x),x)) /* Russell Jay Hendel Feb 28 2015 */
Formula
a(n) = 1 + F(2*n+1) + (-1)^n*L(n). - Russell Jay Hendel, Feb 25 2015
Extensions
a(0), a(13)-a(30) from Russell Jay Hendel, Feb 25 2015
New name (using the formula from Russell Jay Hendel) from Joerg Arndt, Mar 09 2015
Comments