cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006184 Number of cycles in the complement of a path.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 23, 153, 1077, 8490, 75234, 742710, 8084990, 96192405, 1241588865, 17277139383, 257810397243, 4106342523108, 69531388662932, 1247182219179900, 23622547999002444, 471129863595453495, 9868783491120925755, 216617163296681315685, 4971829898824570284305, 119096935551493905531438, 2972224576868227286710038, 77153543251103295197353938
Offset: 0

Views

Author

Keywords

Comments

Number of cycles in K_n - P_n. - Sean A. Irvine, Jan 17 2017

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A302734.

Programs

  • Mathematica
    Array[(1/2)Sum[Sum[Sum[(-1)^(k - i) (i - 1)!*2^j*Binomial[# + i - k, i] Binomial[i, j] Binomial[k - i - 1, k - i - j], {j, 0, k - i}], {i, k}], {k, 3, #}] &, 28, 0] (* Michael De Vlieger, Apr 21 2018 *)
    Table[Sum[(-1)^(k - i) Gamma[i] 2^j Binomial[n + i - k, i] Binomial[i, j] Binomial[k - i - 1, k - i - j], {k, 3, n}, {i, k}, {j, 0, k - i}]/2, {n, 20}] (* Eric W. Weisstein, Apr 23 2018 *)
  • PARI
    a(n)={sum(k=3, n, sum(i=1, k, sum(j=0, min(i,k-i), (-1)^(k-i)*(i-1)!*2^j*binomial(n+i-k, i)*binomial(i, j)*binomial(k-i-1, k-i-j))))/2} \\ Andrew Howroyd, Apr 21 2018

Formula

a(n) = (1/2)*Sum_{k=3..n} Sum_{i=1..k} Sum_{j=0..k-i} (-1)^(k-i)*(i-1)!*2^j*binomial(n+i-k, i)*binomial(i, j)*binomial(k-i-1, k-i-j). - Andrew Howroyd, Apr 21 2018
a(n) ~ (n-1)! / (2*exp(1)). - Vaclav Kotesovec, Apr 22 2018

Extensions

a(0)-a(3) prepended, a(4) corrected, and more terms from Sean A. Irvine, Jan 17 2017