cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006221 From Apery continued fraction for zeta(3): zeta(3)=6/(5-1^6/(117-2^6/(535-3^6/(1463...)))).

Original entry on oeis.org

5, 117, 535, 1463, 3105, 5665, 9347, 14355, 20893, 29165, 39375, 51727, 66425, 83673, 103675, 126635, 152757, 182245, 215303, 252135, 292945, 337937, 387315, 441283, 500045, 563805, 632767, 707135, 787113, 872905, 964715, 1062747, 1167205, 1278293, 1396215, 1521175
Offset: 0

Views

Author

Keywords

Examples

			zeta(3) = 1.20205690315959428539973816151...,
while eight terms of the sequence gives 6/(5-1^6/(117-2^6/(535-3^6/(1463-4^6/(3105-5^6/(9347-6^6/(14355))))))) = 1.20205690315959366144848279245...
		

References

  • G. V. Chudnovsky, Transcendental numbers, pp. 45-69 of Number Theory Carbondale 1979, Lect. Notes Math. 751 (1982).
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 46.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apéry's number or Apéry's constant zeta(3) is A002117. - N. J. A. Sloane, Jul 11 2023
Cf. A005259.

Programs

  • Haskell
    a006221 n = (17 * n * (n + 1) + 5) * (2 * n + 1)
    -- Reinhard Zumkeller, Mar 13 2014
  • Maple
    A006221:=z*(z+1)*(5*z**2+92*z+5)/(z-1)**4; [Conjectured by Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    a[n_] := (2n + 1)(17n^2 + 17n + 5);
    a /@ Range[0, 31] (* Jean-François Alcover, Sep 03 2019 *)
  • PARI
    a(n)=34*n^3+51*n^2+27*n+5
    

Formula

G.f.: (5 + 97*x + 97*x^2 + 5*x^3)/(1-x)^4.
a(n) = 34*n^3 + 51*n^2 + 27*n + 5 = (2*n + 1)*(17*n*(n+1) + 5) [Viennot, p.2].
Can be extended to negative indices by: a(n) = -a(-1-n).
E.g.f.: exp(x)*(5 + 112*x + 153*x^2 + 34*x^3). - Stefano Spezia, Nov 03 2024

Extensions

Typo in description corrected Apr 09 2006 (1436 should have been 1463). Thanks to Simon Plouffe for this correction.