cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006233 Denominators of Cauchy numbers of first type.

Original entry on oeis.org

1, 2, 6, 4, 30, 4, 84, 24, 90, 20, 132, 8, 5460, 840, 360, 48, 1530, 4, 1596, 168, 1980, 1320, 8280, 80, 81900, 6552, 1512, 112, 3480, 80, 114576, 7392, 117810, 7140, 1260, 8, 3838380, 5928, 936, 48, 81180, 440, 1191960, 55440, 869400, 38640, 236880, 224
Offset: 0

Views

Author

Keywords

Comments

The corresponding numerators are given in A006232.
The signed rationals A006232(n)/a(n) provide the a-sequence for the Stirling2 Sheffer matrix A048993. See the W. Lang link concerning Sheffer a- and z-sequences.
Cauchy numbers of the first type are also called Bernoulli numbers of the second kind.

Examples

			1, 1/2, -1/6, 1/4, -19/30, 9/4, -863/84, 1375/24, -33953/90,...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
  • H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge, 1946, p. 259.
  • L. Jolley, Summation of Series, Chapman and Hall, London, 1925, pp. 14-15 (formula 70).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Denominator((&+[StirlingFirst(n,k)/(k+1): k in [0..n]])): n in [0..50]]; // G. C. Greubel, Nov 13 2018
    
  • Maple
    seq(denom(add(stirling1(n,k)/(k+1),k=0..n)),n=0..12); # Peter Luschny, Apr 28 2009
  • Mathematica
    With[{nn=50},Denominator[CoefficientList[Series[x/Log[1+x],{x,0,nn}],x] Range[0,nn]!]] (* Harvey P. Dale, Oct 28 2011 *)
    a[n_] := Sum[ StirlingS1[n, k]/(k+1), {k, 0, n}] // Denominator; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 10 2013, after Peter Luschny *)
    Join[{1}, Array[Abs@Denominator[ Integrate[Product[(x - k), {k, 0, # - 1}], {x, 0, 1}]] &, 50]] (* Michael De Vlieger, Nov 13 2018 *)
  • PARI
    for(n=0,50, print1(denominator( sum(k=0,n, stirling(n, k, 1)/(k+1)) ), ", ")) \\ G. C. Greubel, Nov 13 2018
    
  • Python
    # Results are abs values
    from fractions import gcd
    aa, n, sden = [0, 1], 1, 1
    print(0, 1)
    while n < 20:
        j, snom, sden, a = 1, 0, (n+1)*sden, 0
        while j < len(aa):
            snom, j = snom+aa[j]*(sden//(j+1)), j+1
        nom, den = snom, sden
        print(n,den//gcd(nom,den))
        aa, j = aa+[-aa[j-1]], j-1
        while j > 0:
            aa[j], j = n*aa[j]-aa[j-1], j-1
        n += 1 # A.H.M. Smeets, Nov 14 2018
    
  • Python
    from fractions import Fraction
    from sympy.functions.combinatorial.numbers import stirling
    def A006233(n): return sum(Fraction(stirling(n,k,kind=1,signed=True),k+1) for k in range(n+1)).denominator # Chai Wah Wu, Jul 09 2023
  • Sage
    def A006233_list(len):
        f, R, C = 1, [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = -C[k-1] * k / (k + 1)
            C[0] = -sum(C[k] for k in (1..n))
            R.append((C[0]*f).denominator())
            f *= n+1
        return R
    print(A006233_list(50))  # G. C. Greubel, Nov 13 2018
    

Formula

Denominator of integral of x(x-1)...(x-n+1) from 0 to 1.
E.g.f.: x/log(1+x).
Denominator of Sum_{k=0..n} A048994(n,k)/(k+1). [Peter Luschny, Apr 28 2009]
a(n) = denominator(f(n) * n!), where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n-k+1) * f(k) / (n-k+1). - Daniel Suteu, Feb 23 2018
Sum_{k = 1..n} (1/k) = A001620 + log(n) + 1/(2*n) - Sum_{k >= 2} abs((A006232(k)/a(k)/k/(Product_{j = 0..k-1} (n-j)))), (see I. S. Gradsteyn, I. M. Ryzhik). - A.H.M. Smeets, Nov 14 2018