A006233 Denominators of Cauchy numbers of first type.
1, 2, 6, 4, 30, 4, 84, 24, 90, 20, 132, 8, 5460, 840, 360, 48, 1530, 4, 1596, 168, 1980, 1320, 8280, 80, 81900, 6552, 1512, 112, 3480, 80, 114576, 7392, 117810, 7140, 1260, 8, 3838380, 5928, 936, 48, 81180, 440, 1191960, 55440, 869400, 38640, 236880, 224
Offset: 0
Examples
1, 1/2, -1/6, 1/4, -19/30, 9/4, -863/84, 1375/24, -33953/90,...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
- H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge, 1946, p. 259.
- L. Jolley, Summation of Series, Chapman and Hall, London, 1925, pp. 14-15 (formula 70).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- A. Adelberg, 2-adic congruences of Norland numbers and of Bernoulli numbers of the second kind, J. Number Theory, 73 (1998), 47-58.
- I. S. Gradsteyna and I. M. Ryzhik, Table of integrals, series and products, (1980), page 2 (formula 0.131).
- Wolfdieter Lang, Sheffer a- and z-sequences
- Rui-Li Liu and Feng-Zhen Zhao, Log-concavity of two sequences related to Cauchy numbers of two kinds, Online Journal of Analytic Combinatorics, Issue 14 (2019), #09.
- Donatella Merlini, Renzo Sprugnoli and M. Cecilia Verri, The Cauchy numbers, Discrete Math. 306 (2006), no. 16, 1906-1920.
- Eric Weisstein's World of Mathematics, Bernoulli Number of the Second Kind
- Ming Wu and Hao Pan, Sums of products of Bernoulli numbers of the second kind, Fib. Quart., 45 (2007), 146-150.
- Feng-Zhen Zhao, Sums of products of Cauchy numbers, Discrete Math., 309 (2009), 3830-3842.
Programs
-
Magma
[Denominator((&+[StirlingFirst(n,k)/(k+1): k in [0..n]])): n in [0..50]]; // G. C. Greubel, Nov 13 2018
-
Maple
seq(denom(add(stirling1(n,k)/(k+1),k=0..n)),n=0..12); # Peter Luschny, Apr 28 2009
-
Mathematica
With[{nn=50},Denominator[CoefficientList[Series[x/Log[1+x],{x,0,nn}],x] Range[0,nn]!]] (* Harvey P. Dale, Oct 28 2011 *) a[n_] := Sum[ StirlingS1[n, k]/(k+1), {k, 0, n}] // Denominator; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 10 2013, after Peter Luschny *) Join[{1}, Array[Abs@Denominator[ Integrate[Product[(x - k), {k, 0, # - 1}], {x, 0, 1}]] &, 50]] (* Michael De Vlieger, Nov 13 2018 *)
-
PARI
for(n=0,50, print1(denominator( sum(k=0,n, stirling(n, k, 1)/(k+1)) ), ", ")) \\ G. C. Greubel, Nov 13 2018
-
Python
# Results are abs values from fractions import gcd aa, n, sden = [0, 1], 1, 1 print(0, 1) while n < 20: j, snom, sden, a = 1, 0, (n+1)*sden, 0 while j < len(aa): snom, j = snom+aa[j]*(sden//(j+1)), j+1 nom, den = snom, sden print(n,den//gcd(nom,den)) aa, j = aa+[-aa[j-1]], j-1 while j > 0: aa[j], j = n*aa[j]-aa[j-1], j-1 n += 1 # A.H.M. Smeets, Nov 14 2018
-
Python
from fractions import Fraction from sympy.functions.combinatorial.numbers import stirling def A006233(n): return sum(Fraction(stirling(n,k,kind=1,signed=True),k+1) for k in range(n+1)).denominator # Chai Wah Wu, Jul 09 2023
-
Sage
def A006233_list(len): f, R, C = 1, [1], [1]+[0]*(len-1) for n in (1..len-1): for k in range(n, 0, -1): C[k] = -C[k-1] * k / (k + 1) C[0] = -sum(C[k] for k in (1..n)) R.append((C[0]*f).denominator()) f *= n+1 return R print(A006233_list(50)) # G. C. Greubel, Nov 13 2018
Formula
Denominator of integral of x(x-1)...(x-n+1) from 0 to 1.
E.g.f.: x/log(1+x).
Denominator of Sum_{k=0..n} A048994(n,k)/(k+1). [Peter Luschny, Apr 28 2009]
a(n) = denominator(f(n) * n!), where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n-k+1) * f(k) / (n-k+1). - Daniel Suteu, Feb 23 2018
Sum_{k = 1..n} (1/k) = A001620 + log(n) + 1/(2*n) - Sum_{k >= 2} abs((A006232(k)/a(k)/k/(Product_{j = 0..k-1} (n-j)))), (see I. S. Gradsteyn, I. M. Ryzhik). - A.H.M. Smeets, Nov 14 2018
Comments