cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006268 A continued cotangent.

Original entry on oeis.org

3, 36, 46764, 102266868132036, 1069559300034650646049671039050649693658764
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Continued cotangents: A006267, A006266, A006269, A145180, A145181, A145182, A145183, A145184, A145185, A145186, A145187, A145188, A145189 (k = 1 to 15 with k=4 being A006267(n+1)).

Programs

  • Mathematica
    a = {}; k = 3; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a (* Artur Jasinski, Oct 03 2008 *)
    Table[Round[N[(3/2 + Sqrt[13]/2)^(3^(n - 1)), 1000]], {n, 1, 8}] (* Artur Jasinski, Oct 03 2008 *)
  • PARI
    a(n) = if (n==0, 3, a(n-1)^3 + 3*a(n-1)); \\ Michel Marcus, Aug 28 2020

Formula

From Artur Jasinski, Oct 03 2008: (Start)
a(n+1) = a(n)^3 + 3*a(n) and a(0)=3.
a(n) = round((3/2 + sqrt(13)/2)^(3^(n - 1))). (End)
From Peter Bala, Jan 19 2022: (Start)
a(n) = (3/2 + sqrt(13)/2)^(3^(n-1)) + (3/2 - sqrt(13)/2)^(3^(n-1))
a(n) divides a(n+1) and b(n) = a(n+1)/a(n) satisfies the recurrence b(n+1) = b(n)^3 - 3*b(n-1)^2 + 3. For remarks about this recurrence see A002813.
1 + a(n)^2 = A006273(n+1). (End)