A006284 Pierce expansion for Euler's constant.
1, 2, 6, 13, 21, 24, 225, 615, 17450, 23228, 57774, 221361, 522377, 793040, 1706305, 8664354, 19037086, 51965160, 56870701, 124645388, 784244500, 792809072, 3675221276, 42108268014, 53633289500, 56827261536, 67080647365
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335.
- Eric Weisstein's World of Mathematics, Pierce Expansion
Programs
-
Mathematica
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[EulerGamma, 7!], 25] (* G. C. Greubel, Nov 14 2016 *)
-
PARI
r=1/Euler;for(n=1,30,r=r/(r-floor(r));print1(floor(r),","))
Formula
If u(0) = exp(1/m), where m is an integer >=1, and u(n+1) = u(n)/frac(u(n)) then floor(u(n)) = m*n. Let u(0)=1/gamma and u(n+1) = u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n) = floor(u(n)) - Benoit Cloitre, Mar 09 2004