A006296 Number of genus 1 rooted maps with 3 faces with n vertices.
70, 1720, 24164, 256116, 2278660, 17970784, 129726760, 875029804, 5593305476, 34225196720, 201976335288, 1156128848680, 6447533938280, 35155923872640, 187959014565840, 987658610225052, 5110652802256260, 26084524995672080, 131501187454625560, 655590388845975000, 3235463376771463288, 15820770680078552000, 76708503479715247920, 369046200766330733880, 1762793459781859039080, 8364468224596427692896, 39445646133672676352560, 184956513528952419546448, 862615498961026097997392, 4003067488703222112053760, 18489846573354278755829152, 85028133934182275077421180, 389398354121840111751946628, 1776360539933013004774353872, 8073622060225813990245976280, 36567311475673299914222851832
Offset: 4
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 4..1000
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218.
- Notes
Crossrefs
Programs
-
Mathematica
Rest[CoefficientList[Series[(1 - Sqrt[1 - 4 x]) (45 + 152 x + (25 + 8 x) Sqrt[1 - 4 x]) / (2 (1 - 4 x)^(11 / 2)), {x, 0, 40}], x]] (* Vincenzo Librandi, Jun 06 2017 *)
-
PARI
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x); A006296_ser(N) = { my(y = A000108_ser(N+1)); -2*y*(y-1)^4*(10*y^3 + 97*y^2 - 64*y - 8)/(y-2)^11; }; Vec(A006296_ser(36)) \\ Gheorghe Coserea, Jun 04 2017
Formula
G.f.: x(1-sqrt(1-4*x))(45+152*x+(25+8*x)sqrt(1-4*x))/(2(1-4*x)^(11/2)). - Sean A. Irvine, Nov 14 2010
Extensions
More terms from Sean A. Irvine, Nov 14 2010