A006323 4-dimensional analog of centered polygonal numbers.
1, 10, 41, 115, 260, 511, 910, 1506, 2355, 3520, 5071, 7085, 9646, 12845, 16780, 21556, 27285, 34086, 42085, 51415, 62216, 74635, 88826, 104950, 123175, 143676, 166635, 192241, 220690, 252185, 286936, 325160, 367081, 412930
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).
Programs
-
Magma
[7*Binomial(n+2,4)+Binomial(n+1,2): n in [1..40]]; // Vincenzo Librandi, Sep 06 2013
-
Mathematica
CoefficientList[Series[(-1 - x^2 - 5 x) / (x - 1)^5, {x, 0, 40}],x] (* Vincenzo Librandi, Sep 06 2013 *) LinearRecurrence[{5,-10,10,-5,1},{1,10,41,115,260},40] (* Harvey P. Dale, Dec 27 2022 *)
-
PARI
a(n) = 7*binomial(n + 2, 4) + binomial(n + 1, 2); \\ Michel Marcus, Sep 05 2013
Formula
a(n) = 7*C(n + 2, 4) + C(n + 1, 2).
G.f.: x*(-1-x^2-5*x)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009; adapted to the offset by Vincenzo Librandi, Sep 06 2013
Sum_{n>=1} 1/a(n) = 30 + 4*sqrt(21/5)*Pi*tan(sqrt(15/7)*Pi/2). - Amiram Eldar, Aug 23 2022