cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006332 From the enumeration of corners.

Original entry on oeis.org

0, 2, 28, 168, 660, 2002, 5096, 11424, 23256, 43890, 77924, 131560, 212940, 332514, 503440, 742016, 1068144, 1505826, 2083692, 2835560, 3801028, 5026098, 6563832, 8475040, 10829000, 13704210, 17189172, 21383208, 26397308, 32355010, 39393312, 47663616, 57332704
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Binomial(n+2, 3)*Binomial(2*n+3, 3)/5: n in [0..30]]; // G. C. Greubel, Dec 14 2021
    
  • Maple
    A006332:=-2*(1+z)*(z**2+6*z+1)/(z-1)**7; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[(n(1+n)^2(2+n)(1+2n)(3+2n))/90, {n, 0, 30}] (* or *)
    {0}~Join~CoefficientList[Series[2(x+1)(x^2 +6x +1)/(1-x)^7, {x, 0, 29}], x] (* Michael De Vlieger, Mar 26 2016 *)
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(2*(x+1)*(x^2+6*x+1)/(1-x)^7)) \\ Altug Alkan, Mar 26 2016
    
  • Sage
    [binomial(n+2, 3)*binomial(2*n+3, 3)/5 for n in (0..30)] # G. C. Greubel, Dec 14 2021

Formula

a(n) = (n*(1 + n)^2*(2 + n)*(1 + 2*n)*(3 + 2*n))/90.
a(n) = 2*A006858(n).
a(n) = (-1)^(n+1)*A132339(3, n).
G.f.: 2*(1+x)*(1 + 6*x + x^2)/(1-x)^7.
From G. C. Greubel, Dec 14 2021: (Start)
E.g.f.: (1/90)*x*(180 + 1080*x + 1350*x^2 + 555*x^3 + 84*x^4 + 4*x^5)*exp(x).
a(n) = binomial(n+2, 3)*binomial(2*n+3, 3)/5. (End)
From Amiram Eldar, Jul 10 2023: (Start)
Sum_{n>=1} 1/a(n) = 15*Pi^2 - 295/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = -15*Pi^2/2 + 120*Pi - 605/2. (End)