A006336 a(n) = a(n-1) + a(n - 1 - number of even terms so far).
1, 2, 3, 5, 8, 11, 16, 21, 29, 40, 51, 67, 88, 109, 138, 167, 207, 258, 309, 376, 443, 531, 640, 749, 887, 1054, 1221, 1428, 1635, 1893, 2202, 2511, 2887, 3330, 3773, 4304, 4835, 5475, 6224, 6973, 7860, 8747, 9801, 11022, 12243, 13671, 15306, 16941
Offset: 1
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Max Alekseyev, Proof of Paul Hanna's formula.
- D. R. Hofstadter, Eta-Lore. [Cached copy, with permission]
- D. R. Hofstadter, Pi-Mu Sequences. [Cached copy, with permission]
- D. R. Hofstadter and N. J. A. Sloane, Correspondence, 1977 and 1991.
Crossrefs
Programs
-
Haskell
a006336 n = a006336_list !! (n-1) a006336_list = 1 : h 2 1 0 where h n last evens = x : h (n + 1) x (evens + 1 - x `mod` 2) where x = last + a006336 (n - 1 - evens) -- Reinhard Zumkeller, May 18 2011
-
Maple
# Maple code for first M terms of a(n) and A060144, from N. J. A. Sloane, Oct 25 2014 M:=100; v[1]:=1; v[2]:=2; w[1]:=0; w[2]:=1; for n from 3 to M do v[n]:=v[n-1]+v[n-1-w[n-1]]; if v[n] mod 2 = 0 then w[n]:=w[n-1]+1 else w[n]:=w[n-1]; fi; od: [seq(v[n],n=1..M)]; # A006336 [seq(w[n],n=1..M)]; # A060144 shifted
-
Mathematica
a[n_Integer] := a[n] = Block[{c, k}, c = 0; k = 1; While[k < n, If[ EvenQ[ a[k] ], c++ ]; k++ ]; Return[a[n - 1] + a[n - 1 - c] ] ]; a[1] = 1; a[2] = 2; Table[ a[n], {n, 0, 60} ]
-
PARI
A006336(N=99) = local(a=vector(N,i,1), e=0); for(n=2,#a,e+=0==(a[n]=a[n-1]+a[n-1-e])%2);a \\ M. F. Hasler, Jul 23 2007
Formula
It seems that A006336 can be generated by a rule using the golden ratio phi: a(n) = a(n-1) + a([n/Phi]) for n>1 with a(1)=1 where phi = (sqrt(5)+1)/2, I.e. the number of even terms up to position n-1 equals n-1 - [n/Phi] for n>1 where Phi = (sqrt(5)+1)/2. (This is true - see the Alekseyev link.) - Paul D. Hanna, Jul 22 2007
Extensions
More terms from Robert G. Wilson v, Mar 07 2001
Entry revised by N. J. A. Sloane, Oct 25 2014
Comments