A006337 An "eta-sequence": a(n) = floor( (n+1)*sqrt(2) ) - floor( n*sqrt(2) ).
1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1
Offset: 1
References
- Douglas Hofstadter, "Fluid Concepts and Creative Analogies", Chapter 1: "To seek whence cometh a sequence".
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- F. M. Dekking, On the structure of self-generating sequences, Seminar on Number Theory, 1980-1981 (Talence, 1980-1981), Exp. No. 31, 6 pp., Univ. Bordeaux I, Talence, 1981. Math. Rev. 83e:10075.
- D. R. Hofstadter, Eta-Lore [Cached copy, with permission]
- D. R. Hofstadter, Pi-Mu Sequences [Cached copy, with permission]
- D. R. Hofstadter and N. J. A. Sloane, Correspondence, 1977 and 1991
- Clark Kimberling, Problem 6281, Amer. Math. Monthly 86 (1979), no. 9, 793.
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Crossrefs
Cf. A049472.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - N. J. A. Sloane, Mar 09 2021
Cf. A245222 (an analog with sqrt(3) instead of sqrt(2)).
Programs
-
Haskell
a006337 n = a006337_list !! (n-1) a006337_list = f [1] where f xs = ys ++ f ys where ys = concatMap (\z -> if z == 1 then [1,2] else [1,1,2]) xs -- Reinhard Zumkeller, May 06 2012
-
Maple
Digits := 100; sq2 := sqrt(2.); A006337 := n->floor((n+1)*sq2)-floor(n*sq2);
-
Mathematica
Flatten[ Table[ Nest[ Flatten[ # /. {1 -> {1, 2}, 2 -> {1, 1, 2}}] &, {1}, n], {n, 5}]] (* Robert G. Wilson v, May 06 2005 *) Differences[ Table[ Floor[ n*Sqrt[2]], {n, 1, 106}]] (* Jean-François Alcover, Apr 06 2012 *)
-
PARI
a(n)=sqrt(2)*(n+1)\1-sqrt(2)*n\1 \\ Charles R Greathouse IV, Apr 06 2012
-
PARI
a(n)=sqrtint(2*n^2+4*n+2)-sqrtint(2*n^2) \\ Charles R Greathouse IV, Apr 06 2012
-
Python
from math import isqrt def A006337(n): return -isqrt(m:=n*n<<1)+isqrt(m+(n<<2)+2) # Chai Wah Wu, Aug 03 2022
Formula
Let S(0) = 1; obtain S(k) from S(k-1) by applying 1 -> 12, 2 -> 112; sequence is S(0), S(1), S(2), ... - Matthew Vandermast, Mar 25 2003
a(n) = A159684(n-1) + 1. - Filip Zaludek, Oct 28 2016
Comments