A006338 An "eta-sequence": floor((n+1)*sqrt(2) + 1/2) - floor(n*sqrt(2) + 1/2).
2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2
Offset: 1
References
- Douglas Hofstadter, "Fluid Concepts and Creative Analogies", Chapter 1: "To seek whence cometh a sequence".
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- D. R. Hofstadter, Eta-Lore [Cached copy, with permission]
- D. R. Hofstadter, Pi-Mu Sequences [Cached copy, with permission]
- D. R. Hofstadter and N. J. A. Sloane, Correspondence, 1977 and 1991
Programs
-
Haskell
a006338 n = a006338_list !! (n-1) a006338_list = tail a214848_list -- Reinhard Zumkeller, Mar 03 2014
-
Magma
[Floor((n+1)*Sqrt(2)+1/2) - Floor(n*Sqrt(2)+1/2): n in [1..30]]; // G. C. Greubel, Nov 18 2017
-
Mathematica
a[n_] := Floor[(n+1)*Sqrt[2]+1/2] - Floor[n*Sqrt[2]+1/2]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Nov 24 2015 *) Differences[Table[Floor[n Sqrt[2]+1/2],{n,120}]] (* Harvey P. Dale, Dec 10 2021 *)
-
PARI
for(n=1,30, print1(floor((n+1)*sqrt(2) + 1/2) - floor(n*sqrt(2) + 1/2), ", ")) \\ G. C. Greubel, Nov 18 2017
Formula
a(n) = floor((n+1)*sqrt(2) + 1/2) - floor(n*sqrt(2) + 1/2). - G. C. Greubel, Nov 18 2017
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 28 2003
Comments