cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006353 Expansion of (phi(-q^3) * psi(q))^3 / (phi(-q) * psi(q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 5, 13, 23, 29, 30, 31, 40, 61, 77, 78, 60, 47, 70, 104, 138, 125, 90, 85, 100, 174, 184, 156, 120, 79, 155, 182, 239, 232, 150, 186, 160, 253, 276, 234, 240, 101, 190, 260, 322, 366, 210, 248, 220, 348, 462, 312, 240, 143, 285, 403, 414, 406, 270
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Expansion of a modular form related to Apery numbers A005259. - Michael Somos, Mar 25 1999
Number 11 and 33 of the 126 eta-quotients listed in Table 1 of Williams 2012. - Michael Somos, Nov 10 2018

Examples

			G.f. = 1 + 5*q + 13*q^2 + 23*q^3 + 29*q^4 + 30*q^5 + 31*q^6 + 40*q^7 + 61*q^8 + ...
		

References

  • M. Kontsevich and D. Zagier, Periods, pp. 771-808 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. Zagier, "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103.

Crossrefs

Cf. A000203, A005259, A006352 (E_2), A226235 (t(q)).

Programs

  • Magma
    A := Basis(ModularForms(Gamma0(6), 2)); PowerSeries( A[1] + 5*A[2] + 13*A[3], 56); /* Michael Somos, Sep 04 2013 */
    
  • Mathematica
    EulerTransform[ seq_List ] := With[ {m = Length[seq]}, CoefficientList[ Series[ Times @@ (1/(1 - x^Range[m])^seq), {x, 0, m}], x]]; s6 = Table[ {5, -2, -2, -2, 5, -4}, {10}] // Flatten; EulerTransform[ s6 ] (* Jean-François Alcover, Mar 15 2012, after Michael Somos *)
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ d {0, 5, 4, 6, 4, 5}[[ Mod[d, 6] + 1]], {d, Divisors@n}]]; (* Michael Somos, May 27 2014 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2] QPochhammer[ q^3])^7 / (QPochhammer[ q] QPochhammer[ q^6])^5, {q, 0, n}]; (* Michael Somos, May 27 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, d*[0, 5, 4, 6, 4, 5][ d%6 + 1]))}; /* Michael Somos, Oct 11 2006 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A))^7 / (eta(x + A) * eta(x^6 + A))^5, n))}; /* Michael Somos, Oct 11 2006 */
    
  • PARI
    q='q+O('q^99); Vec((eta(q^2)*eta(q^3))^7/(eta(q)*eta(q^6))^5) \\ Altug Alkan, May 16 2018
    
  • Ruby
    def A000203(n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0}
      s
    end
    def A006353(n)
      a = [0] + (1..n).map{|i| A000203(i)}
      ary = [1]
      (1..n).each{|i|
        ary[i] = 5 * a[i]
        ary[i] -=  2 * a[i / 2] if i % 2 == 0
        ary[i] +=  3 * a[i / 3] if i % 3 == 0
        ary[i] -= 30 * a[i / 6] if i % 6 == 0
      }
      ary
    end
    p A006353(100) # Seiichi Manyama, Jun 09 2017
  • Sage
    A = ModularForms( Gamma0(6), 2, prec=56).basis(); A[0] + 5*A[1] + 13*A[2]; # Michael Somos, Sep 04 2013
    

Formula

Expansion of (b(q^2)^2 / b(q)) * (c(q)^2 / c(q^2)) / 3 in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q^2) * eta(q^3))^7 / (eta(q) * eta(q^6))^5 in powers of q.
Euler transform of period 6 sequence [5, -2, -2, -2, 5, -4, ...]. - Michael Somos, Oct 11 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 6 (t / i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 04 2013
G.f.: Product_{k>0} (1 - x^k)^2 * (1 - x^(3*k))^2 * (1 + x^k)^7 / (1 + x^(3*k))^5.
G.f.: Sum_{n>=0} A005259(n)*t(q)^n where t(q) = (eta(q)*eta(q^6)/(eta(q^2)*eta(q^3)))^12. - Seiichi Manyama, Jun 10 2017 [See the Kontsevich-Zagier paper, section 2.4., and t is given in A226235. - Wolfdieter Lang, May 16 2018 ]

Extensions

Extended with PARI programs by Michael Somos