cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005259 Apery (Apéry) numbers: Sum_{k=0..n} (binomial(n,k)*binomial(n+k,k))^2.

Original entry on oeis.org

1, 5, 73, 1445, 33001, 819005, 21460825, 584307365, 16367912425, 468690849005, 13657436403073, 403676083788125, 12073365010564729, 364713572395983725, 11111571997143198073, 341034504521827105445, 10534522198396293262825, 327259338516161442321485
Offset: 0

Views

Author

Keywords

Comments

Conjecture: For each n = 1,2,3,... the Apéry polynomial A_n(x) = Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
The expansions of exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 5*x + 49*x^2 + 685*x^3 + 11807*x^4 + 232771*x^5 + ... and exp( Sum_{n >= 1} a(n-1)*x^n/n ) = 1 + 3*x + 27*x^2 + 390*x^3 + 7038*x^4 + 144550*x^5 + ... both appear to have integer coefficients. See A267220. - Peter Bala, Jan 12 2016
Diagonal of the rational function R(x, y, z, w) = 1 / (1 - (w*x*y*z + w*x*y + w*z + x*y + x*z + y + z)); also diagonal of rational function H(x, y, z, w) = 1/(1 - w*(1+x)*(1+y)*(1+z)*(x*y*z + y*z + y + z + 1)). - Gheorghe Coserea, Jun 26 2018
Named after the French mathematician Roger Apéry (1916-1994). - Amiram Eldar, Jun 10 2021

Examples

			G.f. = 1 + 5*x + 73*x^2 + 1445*x^3 + 33001*x^4 + 819005*x^5 + 21460825*x^6 + ...
a(2) = (binomial(2,0) * binomial(2+0,0))^2 + (binomial(2,1) * binomial(2+1,1))^2 + (binomial(2,2) * binomial(2+2,2))^2 = (1*1)^2 + (2*3)^2 + (1*6)^2 = 1 + 36 + 36 = 73. - _Michael B. Porter_, Jul 14 2016
		

References

  • Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 137-153.
  • Wolfram Koepf, Hypergeometric Identities. Ch. 2 in Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, pp. 55, 119 and 146, 1998.
  • Maxim Kontsevich and Don Zagier, Periods, pp. 771-808 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
  • Leonard Lipshitz and Alfred van der Poorten, "Rational functions, diagonals, automata and arithmetic." In Number Theory, Richard A. Mollin, ed., Walter de Gruyter, Berlin (1990), pp. 339-358.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apéry's number or Apéry's constant zeta(3) is A002117. - N. J. A. Sloane, Jul 11 2023
Related to diagonal of rational functions: A268545-A268555.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Cf. A092826 (prime terms).

Programs

  • GAP
    List([0..20],n->Sum([0..n],k->Binomial(n,k)^2*Binomial(n+k,k)^2)); # Muniru A Asiru, Sep 28 2018
    
  • Haskell
    a005259 n = a005259_list !! n
    a005259_list = 1 : 5 : zipWith div (zipWith (-)
       (tail $ zipWith (*) a006221_list a005259_list)
       (zipWith (*) (tail a000578_list) a005259_list)) (drop 2 a000578_list)
    -- Reinhard Zumkeller, Mar 13 2014
    
  • Magma
    [&+[Binomial(n, k) ^2 *Binomial(n+k, k)^2: k in [0..n]]:n in  [0..17]]; // Marius A. Burtea, Jan 20 2020
    
  • Maple
    a := proc(n) option remember; if n=0 then 1 elif n=1 then 5 else (n^(-3))* ( (34*(n-1)^3 + 51*(n-1)^2 + 27*(n-1) +5)*a((n-1)) - (n-1)^3*a((n-1)-1)); fi; end;
    # Alternative:
    a := n -> hypergeom([-n, -n, 1+n, 1+n], [1, 1, 1], 1):
    seq(simplify(a(n)), n=0..17); # Peter Luschny, Jan 19 2020
  • Mathematica
    Table[HypergeometricPFQ[{-n, -n, n+1, n+1}, {1,1,1}, 1],{n,0,13}] (* Jean-François Alcover, Apr 01 2011 *)
    Table[Sum[(Binomial[n,k]Binomial[n+k,k])^2,{k,0,n}],{n,0,30}] (* Harvey P. Dale, Oct 15 2011 *)
    a[ n_] := SeriesCoefficient[ SeriesCoefficient[ SeriesCoefficient[ SeriesCoefficient[ 1 / (1 - t (1 + x ) (1 + y ) (1 + z ) (x y z + (y + 1) (z + 1))), {t, 0, n}], {x, 0, n}], {y, 0, n}], {z, 0, n}]; (* Michael Somos, May 14 2016 *)
  • PARI
    a(n)=sum(k=0,n,(binomial(n,k)*binomial(n+k,k))^2) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    def A005259(n):
        m, g = 1, 0
        for k in range(n+1):
            g += m
            m *= ((n+k+1)*(n-k))**2
            m //=(k+1)**4
        return g # Chai Wah Wu, Oct 02 2022

Formula

D-finite with recurrence (n+1)^3*a(n+1) = (34*n^3 + 51*n^2 + 27*n + 5)*a(n) - n^3*a(n-1), n >= 1.
Representation as a special value of the hypergeometric function 4F3, in Maple notation: a(n)=hypergeom([n+1, n+1, -n, -n], [1, 1, 1], 1), n=0, 1, ... - Karol A. Penson Jul 24 2002
a(n) = Sum_{k >= 0} A063007(n, k)*A000172(k). A000172 = Franel numbers. - Philippe Deléham, Aug 14 2003
G.f.: (-1/2)*(3*x - 3 + (x^2-34*x+1)^(1/2))*(x+1)^(-2)*hypergeom([1/3,2/3],[1],(-1/2)*(x^2 - 7*x + 1)*(x+1)^(-3)*(x^2 - 34*x + 1)^(1/2)+(1/2)*(x^3 + 30*x^2 - 24*x + 1)*(x+1)^(-3))^2. - Mark van Hoeij, Oct 29 2011
Let g(x, y) = 4*cos(2*x) + 8*sin(y)*cos(x) + 5 and let P(n,z) denote the Legendre polynomial of degree n. Then G. A. Edgar posted a conjecture of Alexandru Lupas that a(n) equals the double integral 1/(4*Pi^2)*int {y = -Pi..Pi} int {x = -Pi..Pi} P(n,g(x,y)) dx dy. (Added Jan 07 2015: Answered affirmatively in Math Overflow question 178790) - Peter Bala, Mar 04 2012; edited by G. A. Edgar, Dec 10 2016
a(n) ~ (1+sqrt(2))^(4*n+2)/(2^(9/4)*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Nov 01 2012
a(n) = Sum_{k=0..n} C(n,k)^2 * C(n+k,k)^2. - Joerg Arndt, May 11 2013
0 = (-x^2+34*x^3-x^4)*y''' + (-3*x+153*x^2-6*x^3)*y'' + (-1+112*x-7*x^2)*y' + (5-x)*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016
From Peter Bala, Jan 18 2020: (Start)
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j) * C(n,k)^2 * C(n+k,k)^2 * C(n,j) * C(n+k+j,k+j).
a(n) = Sum_{0 <= j, k <= n} C(n,k) * C(n+k,k) * C(k,j)^3 (see Koepf, p. 55).
a(n) = Sum_{0 <= j, k <= n} C(n,k)^2 * C(n,j)^2 * C(3*n-j-k,2*n) (see Koepf, p. 119).
Diagonal coefficients of the rational function 1/((1 - x - y)*(1 - z - t) - x*y*z*t) (Straub, 2014). (End)
a(n) = [x^n] 1/(1 - x)*( Legendre_P(n,(1 + x)/(1 - x)) )^m at m = 2. At m = 1 we get the Apéry numbers A005258. - Peter Bala, Dec 22 2020
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, k). - Peter Bala, Jul 18 2024
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n,k)^2 * C(n,j)^2 * C(k+j,k), see Labelle et al. link. - Max Alekseyev, Mar 12 2025

A226235 Expansion of q * (chi(-q) / chi(-q^3))^12 in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -12, 66, -220, 495, -804, 1068, -1596, 3279, -6952, 12276, -17844, 23653, -34080, 57168, -98428, 154332, -215724, 285388, -395784, 600459, -931888, 1365696, -1853076, 2426189, -3277896, 4689534, -6815008, 9538632, -12664440, 16403188, -21690876, 29812932
Offset: 1

Views

Author

Michael Somos, Sep 18 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 12*q^2 + 66*q^3 - 220*q^4 + 495*q^5 - 804*q^6 + 1068*q^7 - 1596*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^6] / (QPochhammer[ q^2] QPochhammer[ q^3]))^12, {q, 0, n}]
    nmax = 50; CoefficientList[Series[Product[((1 + x^(3*k))/(1 + x^k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2017 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A) / (eta(x^2 + A) * eta(x^3 + A)))^12, n))}

Formula

Expansion of q * (f(-q, -q^5) / f(-q^6))^12 in powers of q where f() is a Ramanujan theta function.
Expansion of ((c(q^2) * b(q)) / (c(q) * b(q^2)))^3 in powers of q where b() and c() are cubic AGM theta functions.
Expansion of (eta(q) * eta(q^6) / (eta(q^2) * eta(q^3)))^12 in powers of q.
Euler transform of period 6 sequence [ -12, 0, 0, 0, -12, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w)= (v - u^2) * (v - w^2) - u*w * (24*(1 + v^2) + 152*v).
G.f. A(x) satisfies f(x) = g(A(x)) where f, g are the g.f. for A006353 and A005259.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = f(t) where q = exp(2 Pi i t).
G.f.: x * (Product_{k>0} 1 - x^k + x^(2*k))^12 where 1 - x + x^2 is the 6th cyclotomic polynomial.
Convolution inverse of A121665. Convolution 12th power of A109389.
a(n) ~ (-1)^(n+1) * exp(2*Pi*sqrt(n/3)) / (2*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 30 2017
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 11 + 5*sqrt(3) - sqrt(189 + 114*sqrt(3)). - Simon Plouffe, Mar 02 2021

A125514 Theta series of 4-dimensional lattice QQF.4.i.

Original entry on oeis.org

1, 4, 20, 4, 52, 24, 20, 32, 116, 4, 120, 48, 52, 56, 160, 24, 244, 72, 20, 80, 312, 32, 240, 96, 116, 124, 280, 4, 416, 120, 120, 128, 500, 48, 360, 192, 52, 152, 400, 56, 696, 168, 160, 176, 624, 24, 480, 192, 244, 228, 620, 72, 728, 216, 20, 288, 928, 80, 600, 240, 312
Offset: 0

Views

Author

N. J. A. Sloane, Jan 31 2007

Keywords

Examples

			G.f. = 1 + 4*x + 20*x^2 + 4*x^3 + 52*x^4 + 24*x^5 + 20*x^6 + 32*x^7 + 116*x^8 + ...
G.f. = 1 + 4*q^2 + 20*q^4 + 4*q^6 + 52*q^8 + 24*q^10 + 20*q^12 + 32*q^14 + 116*q^16 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis(ModularForms( Gamma0(6), 2)); PowerSeries( A[1] + 4*A[2] + 20*A[3], 56); /* Michael Somos, Nov 19 2013 */
  • Mathematica
    a[ n_] := With[{A = QPochhammer[ q] QPochhammer[ q^6], B = QPochhammer[ q^2] QPochhammer[ q^3]}, SeriesCoefficient[ B^7 / A^5 - q A^7 / B^5, {q, 0, n}]] (* Michael Somos, Nov 19 2013 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep( [ 2, 0, 1, 1; 0, 2, 1, 1; 1, 1, 4, 1; 1, 1, 1, 4 ], n, 1)[n])} /* Michael Somos, May 27 2012 */
    
  • PARI
    {a(n) = local(A, B); if( n<0, 0, A = x * O(x^n); B = eta(x^2 + A) * eta(x^3 + A); A = eta(x + A) * eta(x^6 + A); polcoeff( B^7 / A^5 - x * A^7 / B^5, n))} /* Michael Somos, May 27 2012 */
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); 4 * prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 2^(e+2) - 3, if( p==3, 1, (p^(e+1) - 1)/(p - 1))))))} /* Michael Somos, Nov 19 2013 */
    
  • Sage
    A = ModularForms( Gamma0(6), 2, prec=56) . basis(); A[0] + 4*A[1] + 20*A[2]; # Michael Somos, Nov 19 2013
    

Formula

Contribution from Michael Somos, May 27 2012: (Start)
Expansion of (eta(q^2) * eta(q^3))^7 / (eta(q) * eta(q^6))^5 - (eta(q) * eta(q^6))^7 / (eta(q^2) * eta(q^3))^5 in powers of q.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = + 5*u^4 + 637*v^4 + 1280*w^4 + 352*u^2*w^2 + 342*u^2*v^2 + 5472*v^2*w^2 + 64*u^3*w + 1024*u*w^3 - 68*u^3*v - 756*u*v^3 - 4352*v*w^3 - 3024*v^3*w - 688*u^2*v*w + 2464*u*v^2*w - 2752*u*v*w^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 24 (t/i)^2 f(t) where q = exp(2 Pi i t).
Convolution of A030188 and A058490. a(3*n) = a(n). (End)
a(n) = 4*b(n) where b(n) is multiplicative and b(2^e) = 2^(e+2) - 3, b(3^e) = 1, b(p^e) = (p^(e+1) - 1)/(p - 1) otherwise. - Michael Somos, Nov 19 2013
a(n) = A006353(n) - A123532(n). a(6*n + 5) = 24 * A098098(n). - Michael Somos, Nov 19 2013

A123532 Expansion of (eta(q) * eta(q^6))^7 / (eta(q^2) * eta(q^3))^5 in powers of q.

Original entry on oeis.org

1, -7, 19, -23, 6, 11, 8, -55, 73, -42, 12, -5, 14, -56, 114, -119, 18, 65, 20, -138, 152, -84, 24, -37, 31, -98, 235, -184, 30, 66, 32, -247, 228, -126, 48, 49, 38, -140, 266, -330, 42, 88, 44, -276, 438, -168, 48, -101, 57, -217, 342, -322, 54, 227, 72, -440, 380, -210, 60, -30, 62, -224
Offset: 1

Views

Author

Michael Somos, Oct 02 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q - 7*q^2 + 19*q^3 -23*q^4 + 6*q^5 + 11*q^6 + 8*q^7 - 55*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ { 1, -4, 6, -4, 1, 0}[[ Mod[ d, 6, 1]]] d, {d, Divisors[ n]}]]; (* Michael Somos, Sep 19 2013 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^6])^7 / (QPochhammer[ q^2] QPochhammer[ q^3])^5, {q, 0, n}]; (* Michael Somos, Sep 19 2013 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d*[ 0, 1, -4, 6, -4, 1][ d%6 + 1]))};
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A))^7 / (eta(x^2 + A) * eta(x^3 + A))^5, n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, n/d *[ 0, 1, -9, 16, -9, 1][ d%6 + 1]))}; /* Michael Somos, Sep 19 2013 */
    
  • Sage
    A = ModularForms( Gamma0(6), 2, prec=50) . basis(); A[1] - 7*A[2]; # Michael Somos, Sep 19 2013

Formula

Euler transform of period 6 sequence [ -7, -2, -2, -2, -7, -4, ...].
Expansion of q * (phi(-q) * psi(q^3))^3 / (phi(-q^3) * psi(q)) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of (b(q)^2 / b(q^2)) * (c(q^2)^2 / c(q)) / 3 in powers of q where b(), c() are cubic AGM theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 6 (t / i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 19 2013
G.f.: x * Product_{k>0} (1 - x^k)^2 * (1 -x^(3*k))^2 * (1 + x^(3*k))^7 / (1 + x^k)^5.
Convolution of A006353 and A226235. - Michael Somos, Sep 19 2013

A288485 Expansion of (E_4(q) - 28*E_4(q^2) + 63*E_4(q^3) - 36*E(q^6)) / 240.

Original entry on oeis.org

1, -19, 91, -179, 126, -1, 344, -1459, 2521, -2394, 1332, -737, 2198, -6536, 11466, -11699, 4914, 485, 6860, -22554, 31304, -25308, 12168, -6625, 15751, -41762, 68131, -61576, 24390, -126, 29792, -93619, 121212, -93366, 43344, -15803, 50654, -130340
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Comments

Define f(q) = (eta(q^2)*eta(q^3))^7/(eta(q)*eta(q^6))^5, g(q) = Sum_{n>=1} a(n)/n^3 * q^n and t(q) = (eta(q)*eta(q^6)/(eta(q^2)*eta(q^3)))^12.
And define the sequence {b(n)} = {0, 6, 351/4, 62531/36, ...} as the solutions of the recursion (n+1)^3*b(n+1) = (34*n^3 + 51*n^2 + 27*n + 5)*b(n) - n^3*b(n-1), n >= 1 with b(0) = 0, b(1) = 6.
The following equation holds: 6*f(q)*g(q) = Sum_{n>=0} b(n)*t(q)^n.

Examples

			6*f(q)*g(q)
= 6*(1 + 5*q + 13*q^2 + 23*q^3 + 29*q^4 + 30*q^5 + 31*q^6 + 40*q^7 + ... )
  *(q - 19/8*q^2 + 91/27*q^3 - 179/64*q^4 + 126/125*q^5 - 1/216*q^6 + 344/343q^7 - ... )
= 6*q + 63/4*q^2 + 971/36*q^3 + 10679/288*q^4 + 1126103/36000*q^5 + 105401/2400*q^6 + 536870027/12348000*q^7 + ...
= 6 * (q - 12*q^2 + 66*q^3 - 220*q^4 + 495*q^5 - 804*q^6 + 1068*q^7 - ... )
  + 351/4 * (q^2 - 24*q^3 + 276*q^4 - 2024*q^5 + 10626*q^6 - 42528*q^7 + ... )
  + 62531/36 * (q^3 - 36*q^4 + 630*q^5 - 7140*q^6 + 58905*q^7 - ... )
  + 11424695/288 * (q^4 - 48*q^5 + 1128*q^6 - 17296*q^7 + ... )
  + 35441662103/36000 * (q^5 - 60*q^6 + 1770*q^7 - ... )
  + ...
		

References

  • D. Zagier, "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103.

Crossrefs

{b(n)} = {A059415(n)/A059416(n)} = {0, 6, 351/4, 62531/36, ...}.
Cf. A001158 (sigma_3(n)), A004009 (E_4), A006353 (f(q)), A226235 (t(q)).

Programs

  • Mathematica
    a[n_Integer] := Module[{b, ary}, b = Join[{0}, Table[DivisorSigma[3, i], {i, 1, n}]]; ary = b; Do[If[Mod[i, 2] == 0, ary[[i + 1]] -= 28*b[[i/2 + 1]]]; If[Mod[i, 3] == 0, ary[[i + 1]] += 63*b[[i/3 + 1]]]; If[Mod[i, 6] == 0, ary[[i + 1]] -= 36*b[[i/6 + 1]]];, {i, 1, n}]; Rest[ary]]; a[38] (* Robert P. P. McKone, Aug 23 2023 *)
  • Ruby
    def A001158(n)
      s = 0
      (1..n).each{|i| s += i * i * i if n % i == 0}
      s
    end
    def A288485(n)
      a = [0] + (1..n).map{|i| A001158(i)}
      ary = a.clone
      (1..n).each{|i|
        ary[i] -= 28 * a[i / 2] if i % 2 == 0
        ary[i] += 63 * a[i / 3] if i % 3 == 0
        ary[i] -= 36 * a[i / 6] if i % 6 == 0
      }
      ary[1..-1]
    end
    p A288485(100)
Showing 1-5 of 5 results.