cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006364 Numbers k with an even number of 1's in binary, ignoring last bit.

Original entry on oeis.org

0, 1, 6, 7, 10, 11, 12, 13, 18, 19, 20, 21, 24, 25, 30, 31, 34, 35, 36, 37, 40, 41, 46, 47, 48, 49, 54, 55, 58, 59, 60, 61, 66, 67, 68, 69, 72, 73, 78, 79, 80, 81, 86, 87, 90, 91, 92, 93, 96, 97, 102, 103, 106, 107, 108, 109, 114, 115, 116, 117, 120, 121, 126, 127, 130, 131, 132
Offset: 1

Views

Author

Keywords

Comments

Equivalently, numbers k such that k has an odd number of 1's in binary if and only if k is odd. - Aaron Weiner, Jun 19 2013
Numbers k with an even number of trailing zeros in the binary representation of k!, A011371(k). - Amiram Eldar, Sep 05 2024

Examples

			G.f. = x + 6*x^2 + 7*x^3 + 10*x^4 + 11*x^5 + 12*x^6 + 13*x^7 + 18*x^8 + ...
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 111.
  • R. K. Guy, Impartial games, pp. 35-55 of Combinatorial Games, ed. R. K. Guy, Proc. Sympos. Appl. Math., 43, Amer. Math. Soc., 1991.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006364 n = a006364_list
    a006364_list = filter (even . a000120. (`div` 2)) [0..]
    -- Reinhard Zumkeller, Oct 03 2011
  • Mathematica
    Select[Range[0,150],EvenQ[Count[Most[IntegerDigits[#,2]],1]]&] (* Harvey P. Dale, Nov 03 2011 *)
    a[ n_] := Which[ n < 1, 0, Mod[n, 2] > 0, a[n - 1] + 1, Mod[n, 4] > 0, 3 n - a[n/2 - 1], True, n + a[n/2]]; (* Michael Somos, Dec 21 2016 *)
  • PARI
    a(n)=if(n<1,0,if(n%2==0,if(n%4==0,a(n/2)+n,-a((n-2)/2)+3*n),a(n-1)+1)) \\ Ralf Stephan
    
  • PARI
    is(n)=hammingweight(n>>1)%2==0 \\ Charles R Greathouse IV, Jun 19 2013
    

Formula

Union of 2*A001969 and 2*A001969+1. With initial index 0: a(2n+1) = a(2n)+1, a(4n) = a(2n)+4n, a(4n+2) = -a(2n)+12n+6. - Ralf Stephan, Oct 17 2003
Conjecture: a(n) = 2*n + (-1)^(n-A000120(n-1)) - (3+(-1)^n)/2. - Velin Yanev, Dec 21 2016