A006364 Numbers k with an even number of 1's in binary, ignoring last bit.
0, 1, 6, 7, 10, 11, 12, 13, 18, 19, 20, 21, 24, 25, 30, 31, 34, 35, 36, 37, 40, 41, 46, 47, 48, 49, 54, 55, 58, 59, 60, 61, 66, 67, 68, 69, 72, 73, 78, 79, 80, 81, 86, 87, 90, 91, 92, 93, 96, 97, 102, 103, 106, 107, 108, 109, 114, 115, 116, 117, 120, 121, 126, 127, 130, 131, 132
Offset: 1
Examples
G.f. = x + 6*x^2 + 7*x^3 + 10*x^4 + 11*x^5 + 12*x^6 + 13*x^7 + 18*x^8 + ...
References
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 111.
- R. K. Guy, Impartial games, pp. 35-55 of Combinatorial Games, ed. R. K. Guy, Proc. Sympos. Appl. Math., 43, Amer. Math. Soc., 1991.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J.-P. Allouche and J. Shallit, The Ring of k-regular Sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.
- Index entries for sequences related to binary expansion of n.
Programs
-
Haskell
a006364 n = a006364_list a006364_list = filter (even . a000120. (`div` 2)) [0..] -- Reinhard Zumkeller, Oct 03 2011
-
Mathematica
Select[Range[0,150],EvenQ[Count[Most[IntegerDigits[#,2]],1]]&] (* Harvey P. Dale, Nov 03 2011 *) a[ n_] := Which[ n < 1, 0, Mod[n, 2] > 0, a[n - 1] + 1, Mod[n, 4] > 0, 3 n - a[n/2 - 1], True, n + a[n/2]]; (* Michael Somos, Dec 21 2016 *)
-
PARI
a(n)=if(n<1,0,if(n%2==0,if(n%4==0,a(n/2)+n,-a((n-2)/2)+3*n),a(n-1)+1)) \\ Ralf Stephan
-
PARI
is(n)=hammingweight(n>>1)%2==0 \\ Charles R Greathouse IV, Jun 19 2013
Formula
Union of 2*A001969 and 2*A001969+1. With initial index 0: a(2n+1) = a(2n)+1, a(4n) = a(2n)+4n, a(4n+2) = -a(2n)+12n+6. - Ralf Stephan, Oct 17 2003
Conjecture: a(n) = 2*n + (-1)^(n-A000120(n-1)) - (3+(-1)^n)/2. - Velin Yanev, Dec 21 2016
Comments