A006381 Number of n X 3 binary matrices under row and column permutations and column complementations.
1, 1, 4, 7, 19, 32, 68, 114, 210, 336, 562, 862, 1349, 1987, 2950, 4201, 5991, 8278, 11422, 15386, 20660, 27218, 35718, 46158, 59401, 75475, 95494, 119545, 149035, 184118, 226562, 276620, 336470, 406490, 489344, 585572, 698397, 828549, 979896
Offset: 0
Examples
Representatives of the seven classes of 3 X 3 binary matrices are: [ 1 1 1 ] [ 1 1 0 ] [ 1 0 1 ] [ 1 0 1 ] [ 0 1 1 ] [ 0 1 1 ] [ 0 1 1 ] [ 1 1 1 ] [ 1 1 1 ] [ 1 1 0 ] [ 1 1 0 ] [ 1 0 1 ] [ 1 0 0 ] [ 1 0 0 ] [ 1 1 1 ] [ 1 1 1 ] [ 1 1 1 ] [ 1 1 0 ] [ 1 1 0 ] [ 1 1 1 ] [ 1 0 0 ].
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1052.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,2,-5,7,-4,2,2,-8,10,-8,2,2,-4,7,-5,2,-1,-2,3,-1).
- Index entries for sequences related to binary matrices
- Index entries for two-way infinite sequences
Programs
-
PARI
Vec((1/(1 - x^1)^8 + 13/(1 - x^2)^4 + 6/(1 - x^1)^4/(1 - x^2)^2 + 12/(1 - x^4)^2 + 8/(1 - x^1)^2/(1 - x^3)^2 + 8/(1 - x^2)^1/(1 - x^6)^1)/48 + O(x^41)) \\ Andrew Howroyd, May 30 2023
Formula
G.f.: (1/(1 - x^1)^8 + 13/(1 - x^2)^4 + 6/(1 - x^1)^4/(1 - x^2)^2 + 12/(1 - x^4)^2 + 8/(1 - x^1)^2/(1 - x^3)^2 + 8/(1 - x^2)^1/(1 - x^6)^1)/48.
G.f.: (x^14 - 2*x^13 + 3*x^12 - 2*x^11 + 5*x^10 - 4*x^9 + 7*x^8 - 4*x^7 + 7*x^6 - 4*x^5 + 5*x^4 - 2*x^3 + 3*x^2 - 2*x + 1)/(x^6 - 1)/(x^2 + 1)^2/(x^2 + x + 1)/(x + 1)^3/(x - 1)^7.
Extensions
Entry revised by Vladeta Jovovic, Aug 05 2000
Definition corrected by Max Alekseyev, Feb 05 2010
Comments