A006456 Number of compositions (ordered partitions) of n into squares.
1, 1, 1, 1, 2, 3, 4, 5, 7, 11, 16, 22, 30, 43, 62, 88, 124, 175, 249, 354, 502, 710, 1006, 1427, 2024, 2870, 4068, 5767, 8176, 11593, 16436, 23301, 33033, 46832, 66398, 94137, 133462, 189211, 268252, 380315, 539192, 764433, 1083764, 1536498, 2178364
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..5000 (terms 0..500 from T. D. Noe)
- Jan Bohman, Carl-Erik Fröberg, Hans Riesel, Partitions in squares, Nordisk Tidskr. Informationsbehandling (BIT) 19 (1979), 297-301.
- J. Bohman et al., Partitions in squares, Nordisk Tidskr. Informationsbehandling (BIT) 19 (1979), 297-301. (Annotated scanned copy)
- N. Robbins, On compositions whose parts are polygonal numbers, Annales Univ. Sci. Budapest., Sect. Comp. 43 (2014) 239-243. See p. 242.
- Index entries for sequences related to sums of squares
Programs
-
Maple
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1, add(a(n-j^2), j=1..isqrt(n)))) end: seq(a(n), n=0..44); # Alois P. Heinz, Jul 26 2025
-
Mathematica
a[n_]:=a[n]=If[n==0, 1, Sum[a[n - k], {k, Select[Range[n], IntegerQ[Sqrt[#]] &]}]]; Table[a[n], {n,0, 100}] (* Indranil Ghosh, Jul 28 2017, after David W. Wilson's formula *)
-
PARI
N=66; x='x+O('x^N); Vec( 1/( 1 - sum(k=1,1+sqrtint(N), x^(k^2) ) ) ) /* Joerg Arndt, Sep 30 2012 */
-
Python
from gmpy2 import is_square class Memoize: def _init_(self, func): self.func=func self.cache={} def _call_(self, arg): if arg not in self.cache: self.cache[arg] = self.func(arg) return self.cache[arg] @Memoize def a(n): return 1 if n==0 else sum([a(n - k) for k in range(1, n + 1) if is_square(k)]) print([a(n) for n in range(101)]) # Indranil Ghosh, Jul 28 2017, after David W. Wilson's formula
Formula
a(0) = 1; a(n) = Sum_{1 <= k^2 <= n} a(n-k^2), if n > 0. - David W. Wilson
G.f.: 1/(1-x-x^4-x^9-....) - Jon Perry, Jul 04 2004
a(n) ~ c * d^n, where d is the root of the equation EllipticTheta(3, 0, 1/d) = 3, d = 1.41774254618138831428829091099000662953179532057717725688..., c = 0.46542113389379672452973940263069782869244877335179331541... - Vaclav Kotesovec, May 01 2014, updated Jan 05 2017
G.f.: 2/(3 - theta_3(q)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 08 2018
Extensions
Name corrected by Bob Selcoe, Feb 12 2014