cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006456 Number of compositions (ordered partitions) of n into squares.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 7, 11, 16, 22, 30, 43, 62, 88, 124, 175, 249, 354, 502, 710, 1006, 1427, 2024, 2870, 4068, 5767, 8176, 11593, 16436, 23301, 33033, 46832, 66398, 94137, 133462, 189211, 268252, 380315, 539192, 764433, 1083764, 1536498, 2178364
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A280542.
Row sums of A337165.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0,
          `if`(n=0, 1, add(a(n-j^2), j=1..isqrt(n))))
        end:
    seq(a(n), n=0..44);  # Alois P. Heinz, Jul 26 2025
  • Mathematica
    a[n_]:=a[n]=If[n==0, 1, Sum[a[n - k], {k, Select[Range[n], IntegerQ[Sqrt[#]] &]}]]; Table[a[n], {n,0,  100}] (* Indranil Ghosh, Jul 28 2017, after David W. Wilson's formula *)
  • PARI
    N=66;  x='x+O('x^N);
    Vec( 1/( 1 - sum(k=1,1+sqrtint(N), x^(k^2) ) ) )
    /* Joerg Arndt, Sep 30 2012 */
    
  • Python
    from gmpy2 import is_square
    class Memoize:
        def _init_(self, func):
            self.func=func
            self.cache={}
        def _call_(self, arg):
            if arg not in self.cache:
                self.cache[arg] = self.func(arg)
            return self.cache[arg]
    @Memoize
    def a(n): return 1 if n==0 else sum([a(n - k) for k in range(1, n + 1) if is_square(k)])
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jul 28 2017, after David W. Wilson's formula

Formula

a(0) = 1; a(n) = Sum_{1 <= k^2 <= n} a(n-k^2), if n > 0. - David W. Wilson
G.f.: 1/(1-x-x^4-x^9-....) - Jon Perry, Jul 04 2004
a(n) ~ c * d^n, where d is the root of the equation EllipticTheta(3, 0, 1/d) = 3, d = 1.41774254618138831428829091099000662953179532057717725688..., c = 0.46542113389379672452973940263069782869244877335179331541... - Vaclav Kotesovec, May 01 2014, updated Jan 05 2017
G.f.: 2/(3 - theta_3(q)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 08 2018

Extensions

Name corrected by Bob Selcoe, Feb 12 2014