A006499 Number of restricted circular combinations.
1, 3, 9, 12, 16, 28, 49, 77, 121, 198, 324, 522, 841, 1363, 2209, 3572, 5776, 9348, 15129, 24477, 39601, 64078, 103684, 167762, 271441, 439203, 710649, 1149852, 1860496, 3010348, 4870849, 7881197, 12752041, 20633238, 33385284, 54018522, 87403801, 141422323, 228826129
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. E. Bergum and V. E. Hoggatt, Jr., A combinatorial problem involving recursive sequences and tridiagonal matrices, Fib. Quart., 16 (1978), 113-118.
- T. Guardia and D. Jiménez, Fiboquadratic Sequences and Extensions of the Cassini Identity Raised From the Study of Rithmomachia, arXiv preprint arXiv:1509.03177 [math.HO], 2015-2016.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).
Programs
-
Maple
A006499:=-(1+2*z+6*z**2+2*z**3)/((z**2+z-1)*(1+z**2)); # [conjectured (correctly) by Simon Plouffe in his 1992 dissertation]
-
Mathematica
CoefficientList[ Series[(1 + 2x + 6x^2 + 2x^3)/((1 + x^2)(1 - x - x^2)), {x, 0, 35}], x] (* Robert G. Wilson v, Feb 25 2005 *)
Formula
G.f.: (1+2x+6x^2+2x^3)/((1+x^2)*(1-x-x^2)). - Ralf Stephan, Apr 23 2004
From Ralf Stephan, Jun 09 2005: (Start)
a(n) = Lucas(n+2) - i^n - (-i)^n - (1/2)*i^(n-1) - (1/2)*(-i)^(n-1) where i = sqrt(-1).
a(n) = (1/2)*(Lucas(n+2) - 3*(-1)^floor(n/2) + (-1)^floor((n-1)/2)). (End)
From Greg Dresden, Jan 15 2024: (Start)
a(n) = Lucas(floor(n/2+1))*Lucas(ceiling(n/2+1));
a(2*n) = Lucas(n+1)^2;
a(2*n+1) = Lucas(n+1)*Lucas(n+2). (End)
E.g.f.: exp(x/2)*(3*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)) - 2*cos(x) - sin(x). - Stefano Spezia, Mar 12 2024
Extensions
a(36)-a(38) from Stefano Spezia, Mar 12 2024
Comments