cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A130654 Exponent m such that 2^m = A092505(n) = A002430(n) / A046990(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Alexander Adamchuk, Jun 20 2007, Jun 23 2007

Keywords

Comments

Conjecture: A092505(n) is always a power of 2. a(n) = Log[ 2, A092505(n) ]. Note that a(n) = 0 iff n is a power of 2; or A002430(2^n) = A046990(2^n) and A092505(2^n) = 1. It appears that a(2k+1) = 1 for k>0. Note that least index k such that a(k) = n is {1, 3, 14, 60, ...} which apparently coincides with A006502(n) = {1, 3, 14, 60, 279, 1251, ...} Related to Fibonacci numbers (see Carlitz reference).
Least index k such that a(k) = n is listed in A131262(n) = {1, 3, 14, 60, 248, ...}. Conjecture: A131262(n) = Sigma(2^n)*EulerPhi(2^n) = 2^(2n) - Floor(2^n/2) = A062354(2^n). If this conjecture is true then a(1008) = 5 and a(n)<5 for all n<1008.
Positions of records indeed continue as 1, 3, 14, 60, 248, 1008, 4064, 16320, ..., strongly suggesting union of {1} and A171499. - Antti Karttunen, Jan 13 2019

Examples

			A092505(n) begins {1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 4, 2, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 1, ...}.
Thus a(1) = Log[2,1] = 0, a(2) = Log[2,1] = 0, a(3) = Log[2,2] = 1.
		

Crossrefs

Cf. A092505 = A002430(n) / A046990(n), n>0. Cf. A002430 = Numerators in Taylor series for tan(x). Cf. A046990 = Numerators of Taylor series for log(1/cos(x)). Cf. A006502 = Related to Fibonacci numbers.
Cf. A131262 = Least index k such that A130654(k) = n. Cf. A062354 = Sigma(n)*EulerPhi(n).
Cf. also A171499.

Programs

  • Mathematica
    a=Series[ Tan[x], {x,0,256} ]; b=Series[ Log[ 1/Cos[x] ], {x,0,256}]; Table[ Log[ 2, Numerator[ SeriesCoefficient[ a, 2n-1 ] ] / Numerator[ SeriesCoefficient[ b, 2n ] ] ], {n,1,128} ]

Formula

a(n) = Log[ 2, A092505(n) ]. a(n) = Log[ 2, A002430(n) / A046990(n) ] = A007814(A092505(n)).

A259708 Triangle T(n,k) (0 <= k <= n) giving coefficients of certain polynomials related to Fibonacci numbers.

Original entry on oeis.org

1, 0, 1, 1, -1, 2, 0, 3, 0, 3, 1, 0, 14, 4, 5, 0, 8, 22, 60, 22, 8, 1, 6, 99, 244, 279, 78, 13, 0, 21, 240, 1251, 2016, 1251, 240, 21, 1, 25, 715, 5245, 14209, 14083, 5329, 679, 34, 0, 55, 1828, 21532, 88060, 139930, 88060, 21532, 1828, 55, 1, 78, 4817, 83060, 507398, 1218920, 1219382, 507068, 83225, 4762, 89
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2015

Keywords

Comments

The terms are the coefficients of the polynomials given by r_0(x) = 1; r_1(x) = x; r_(n+1) = (n+1)*x*r_n(x) + x*(1-x)*(r_n)'(x) + (1 - x)^2*r_(n-1)(x). [Carlitz, (1.6)]. Note: Carlitz wrongly states r_1(x) = 1. - Eric M. Schmidt, Jul 10 2015

Examples

			Triangle begins:
1,
0,1,
1,-1,2,
0,3,0,3,
1,0,14,4,5,
0,8,22,60,22,8,
1,6,99,244,279,78,13,
0,21,240,1251,2016,1251,240,21,
...
		

Crossrefs

Diagonals include A000045, A259709, A006502.
Cf. A000142 (row sums).

Programs

  • Maple
    A259708  := proc(n,k)
        if k < 0 or k > n then
            0;
        elif k =0 and n =0 then
            1;
        else
            (n-k+1)*procname(n-1,k-1)+k*procname(n-1,k)+procname(n-2,k)-2*procname(n-2,k-1) + procname(n-2,k-2) ;
        end if ;
    end proc: # R. J. Mathar, Jun 18 2019
  • Mathematica
    T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, If[k == 0 && n == 0, 1, (n - k + 1) T[n - 1, k - 1] + k T[n - 1, k] + T[n - 2, k] - 2 T[n - 2, k - 1] + T[n - 2, k - 2]]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 30 2020 *)
  • Sage
    @CachedFunction
    def T(n,k) :
        if n < 0 or k < 0 : return 0
        if n == 0 and k == 0 : return 1
        return (n-k+1)*T(n-1,k-1) + k*T(n-1,k) + T(n-2,k) - 2*T(n-2,k-1) + T(n-2,k-2)
    # Eric M. Schmidt, Jul 10 2015

Formula

T(0,0) = 1; T(n+1,k) = (n-k+2)*T(n,k-1) + k*T(n,k) + T(n-1,k) - 2*T(n-1,k-1) + T(n-1,k-2), where we put T(n,k) = 0 if n < 0 or k < 0. As special cases, T(n,n) = Fibonacci(n+1) and T(n,0) = 1 (n even) or 0 (n odd). - Rewritten by Eric M. Schmidt, Jul 10 2015

Extensions

More terms from and name revised by Eric M. Schmidt, Jul 10 2015

A259709 a(n) = A259708(n,n-1).

Original entry on oeis.org

0, -1, 0, 4, 22, 78, 240, 679, 1828, 4762, 12132, 30432, 75504, 185875, 455040, 1109540, 2697698, 6545670, 15859128, 38384099, 92832716, 224399570, 542226888, 1309862496, 3163659744, 7640066759, 18448657344, 44545569508, 107553559150, 259675788510
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2015

Keywords

Crossrefs

Cf. A259708.

Formula

Empirical: a(n) = 4*a(n-1) - 2*a(n-2) - 6*a(n-3) + 2*a(n-4) + 4*a(n-5) + a(n-6). - Eric M. Schmidt, Jul 10 2015
Empirical: G.f.: -x^2*(-1+2*x^2+4*x) / ( (x^2+2*x-1)*(x^2+x-1)^2 ). - R. J. Mathar, Jul 15 2015

Extensions

More terms from Eric M. Schmidt, Jul 10 2015
Showing 1-3 of 3 results.