cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006541 Number of dissimilarity relations on an n-set.

Original entry on oeis.org

1, 1, 13, 4683, 102247563, 230283190977853, 81124824998504073881821, 6297562064950066033518373935334635, 144199280951655469628360978109406917583513090155, 1255482482235481041484313695469155949742941807533901307975355741
Offset: 1

Views

Author

Keywords

References

  • M. Schader, Hierarchical analysis: classification with ordinal object dissimilarities, Metrika, 27 (1980), 127-132.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, k) b(n, k):= `if`(n=0, k!, k*b(n-1, k)+b(n-1, k+1)) end:
    a:= n-> b(n*(n-1)/2, 0):
    seq(a(n), n=1..12);  # Alois P. Heinz, Dec 02 2024
  • Mathematica
    a[n_] := PolyLog[-n(n-1)/2, 1/2]/2; a[1]=1; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, Jun 28 2012, after Wouter Meeussen *)
  • PARI
    a(n)=ceil(polylog(-n*(n-1)/2, 1/2)/2) \\ Charles R Greathouse IV, Aug 27 2014

Formula

a(n) = Sum_{i=0..m} (m-i)!*Stirling2(m, m-i), where m = n*(n-1)/2.
a(n) = A000670(n*(n-1)/2).

Extensions

More terms from James Sellers, Jan 19 2000