cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005121 Number of ultradissimilarity relations on an n-set.

Original entry on oeis.org

1, 1, 4, 32, 436, 9012, 262760, 10270696, 518277560, 32795928016, 2542945605432, 237106822506952, 26173354092593696, 3375693096567983232, 502995942483693043200, 85750135569136650473360, 16583651916595710735271248, 3611157196483089769387182064, 879518067472225603327860638128
Offset: 1

Views

Author

Keywords

Comments

First column in A154960. - Mats Granvik, Jan 18 2009
Number of chains from minimum to maximum in the lattice of set partitions of {1, ..., n} ordered by refinement. - Gus Wiseman, Jul 22 2018

Examples

			From _Gus Wiseman_, Jul 22 2018: (Start)
The (3) = 4 chains from minimum to maximum in the lattice of set partitions of {1,2,3}:
  {{1},{2},{3}} < {{1,2,3}}
  {{1},{2},{3}} < {{1},{2,3}} < {{1,2,3}}
  {{1},{2},{3}} < {{2},{1,3}} < {{1,2,3}}
  {{1},{2},{3}} < {{3},{1,2}} < {{1,2,3}}
(End)
		

References

  • L. Babai and T. Lengyel, A convergence criterion for recurrent sequences with application to the partition lattice, Analysis 12 (1992), 109-119.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 316-321.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[StirlingS2[n, k]*a[k], {k, 1, n-1}]; Array[a, 19]
    (* Jean-François Alcover, Jun 24 2011, after Vladeta Jovovic *)
  • PARI
    {a(n) = local(A); if( n<1, 0, for(k=1, n, A = truncate(A) + x*O(x^k); A = x - A + subst(A, x, exp(x + x*O(x^k)) - 1)); n! * polcoeff(A, n))} /* Michael Somos, Sep 22 2007 */

Formula

a(n) = Sum_{i=1..n-1} N_i(n), where N_k(m) = Sum_{j=k..m-1} Stirling2(m, j)*N_{k-1}(j), m=3..n, k=2..m-1; N_1(2)=N_1(3)=...=N_1(n)=1.
a(n) = Sum_{k=1..n-1} Stirling2(n, k)*a(k) [Lengyel]. - Vladeta Jovovic, Apr 16 2003
E.g.f. satisfies Z(z) = 1/2 * (Z(exp(z)-1) - z). [Lengyel]
Asymptotic growth: a(n) ~ C_L*(n!)^2*(2log(2))^(-n)*n^(-1-1/3*log(2)) (Babai and Lengyel), with C_L = 1.0986858055... = A086053 [Flajolet and Salvy].
Sum_{k>=1} a(k-1)/fallfac(n,k) = -1/n^2 + 2*Sum_{k>=1} a(k-1)/n^k, with the falling factorials fallfac(n,k) = Product_{j=0..k-1}(n-j). - Vaclav Kotesovec, Aug 04 2015

Extensions

More terms from Vladeta Jovovic, Apr 16 2003

A376162 Number of ordered partitions of S={(i,j):1 <= i , j <= n} where for every i and j the pairs (i+1,j) and (i,j+1) are in a later part than the part containing the pair (i,j), and the pairs (i,j), (j,i) are in the same part.

Original entry on oeis.org

1, 1, 3, 39, 2905, 1538369, 6904262355, 304662492057063, 150347237334006997801, 929721796071361437087789041, 79773595676787229793797978773561927, 104165556509336140832819242491033872033130063, 2252283824141388832759484222915451435885285752729087857
Offset: 1

Views

Author

Kevin O'Bryant, Sep 12 2024

Keywords

Comments

Ordered partitions are also called weak orderings.
Any such ordered partition can be written as a list of pairs (i,j) with 1 <= i <= j <= n, with either "=" or "<" between each pair, and so that (i,j) appears in the list before (i+1,j) (if i
Given any set A={a_1<...
Given any set A={a_1<...
Equivalently, a(n) is the number of n X n symmetric matrices whose values cover an initial interval of positive integers and whose rows have values which are strictly increasing. - Andrew Howroyd, Sep 15 2024

Examples

			For n=2 the a(2)=1 ordered partition is {(1,1)}<{(2,1),(1,2)}<{(2,2)}. We can encode this as 11<12<22, writing "ij" for the pair (i,j).
For n=3 one of the a(3)=3 ordered partitions is {(1,1)}<{(1,2),(2,1)}<{(1,3),(3,1),(2,2)}<{(2,3),(3,2)}<{(3,3)}, which is encoded as either 11<12<13=22<23<33 or 11<12<22=13<23<33. The other two ordered partitions can be encoded as 11<12<22<13<23<33 and 11<12<13<22<23<33.
From _Andrew Howroyd_, Sep 15 2024: (Start)
The a(3) = 3 symmetric matrices are:
    [1 2 3]   [1 2 3]   [1 2 4]
    [2 3 4]   [2 4 5]   [2 3 5]
    [3 4 5]   [3 5 6]   [4 5 6]
(End)
		

Crossrefs

Programs

Formula

a(n) <= A000670(n*(n+1)/2).

Extensions

a(7) onwards from Andrew Howroyd, Sep 15 2024
Showing 1-2 of 2 results.