cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006579 a(n) = Sum_{k=1..n-1} gcd(n,k).

Original entry on oeis.org

0, 1, 2, 4, 4, 9, 6, 12, 12, 17, 10, 28, 12, 25, 30, 32, 16, 45, 18, 52, 44, 41, 22, 76, 40, 49, 54, 76, 28, 105, 30, 80, 72, 65, 82, 132, 36, 73, 86, 140, 40, 153, 42, 124, 144, 89, 46, 192, 84, 145, 114, 148, 52, 189, 134, 204, 128, 113, 58, 300, 60, 121, 210, 192
Offset: 1

Views

Author

Keywords

Comments

This sequence for a(n) also arises in the following context. If f(x) is a monic univariate polynomial of degree d>1 over Zn (= Z/nZ, the ring of integers modulo n), and we let X be the number of distinct roots of f(x) in Zn taken over all n^d choices for f(x), then the variance Var[X] = a(n)/n and the expected value E[X] = 1. - Michael Monagan, Sep 11 2015
Conjecture: a(n) != -1 (mod n) for a composite n. - Thomas Ordowski, Jun 11 2025

Examples

			a(12) = gcd(12,1) + gcd(12,2) + ... + gcd(12,11) = 1 + 2 + 3 + 4 + 1 + 6 + 1 + 4 + 3 + 2 + 1 = 28.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Antidiagonal sums of array A003989.
Cf. A018804.

Programs

  • Maple
    a:= n-> add(igcd(n, k), k=1..n-1):
    seq(a(n), n=1..64);
  • Mathematica
    f[n_] := Sum[ GCD[n, k], {k, 1, n - 1}]; Table[ f[n], {n, 1, 60}]
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, Apr 26 2023 *)
  • PARI
    A006579(n) = sum(k=1,n-1,gcd(n,k)) \\ Michael B. Porter, Feb 23 2010
    
  • Python
    from math import prod
    from sympy import factorint
    def A006579(n): return prod(p**(e-1)*((p-1)*e+p) for p, e in factorint(n).items()) - n # Chai Wah Wu, May 15 2022

Formula

a(p) = p-1 for a prime p.
a(n) = A018804(n)-n = Sum_{ d divides n } (d-1)*phi(n/d). - Vladeta Jovovic, May 04 2002
a(n+2) = Sum_{k=0..n} gcd(n-k+1, k+1) = -Sum_{k=0..4n+2} gcd(4n-k+3, k+1)*(-1)^k/4. - Paul Barry, May 03 2005
G.f.: Sum_{k>=1} phi(k) * x^(2*k) / (1 - x^k)^2. - Ilya Gutkovskiy, Feb 06 2020
a(p^k) = k(p-1)p^(k-1) for prime p. - Chai Wah Wu, May 15 2022

Extensions

More terms from Robert G. Wilson v, May 04 2002
Corrected by Ron Lalonde (ronronronlalonde(AT)hotmail.com), Oct 24 2002