cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006645 Self-convolution of Pell numbers (A000129).

Original entry on oeis.org

0, 0, 1, 4, 14, 44, 131, 376, 1052, 2888, 7813, 20892, 55338, 145428, 379655, 985520, 2545720, 6547792, 16777993, 42847988, 109099078, 277040572, 701794187, 1773851304, 4474555476, 11266301976, 28318897549, 71070913036, 178106093666, 445740656420, 1114147888655
Offset: 0

Views

Author

Keywords

Examples

			G.f. = x^2 + 4*x^3 + 14*x^4 + 44*x^5 + 131*x^6 + 376*x^7 + 1052*x^8 + ...
		

References

  • R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149. (The sequences w_n and z_n)

Crossrefs

a(n)= A054456(n-1, 1), n>=1 (second column of triangle), A054457.

Programs

  • Maple
    a:= n-> (Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [4, -2, -4, -1][i] else 0 fi)^n) [1,3]: seq(a(n), n=0..40); # Alois P. Heinz, Oct 28 2008
  • Mathematica
    pell[n_] := Simplify[ ((1+Sqrt[2])^n - (1-Sqrt[2])^n)/(2*Sqrt[2])]; a[n_] := First[ ListConvolve[ pp = Array[pell, n+1, 0], pp]]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Oct 21 2011 *)
    Table[(n Fibonacci[n - 1, 2] + (n - 1) Fibonacci[n, 2])/4, {n, 0, 30}] (* Vladimir Reshetnikov, May 08 2016 *)
  • Sage
    taylor( mul(x/(1 - 2*x - x^2) for i in range(1,3)),x,0,28) # Zerinvary Lajos, Jun 03 2009

Formula

a(n) = Sum_{k=0..n} b(k)*b(n-k) with b(k) := A000129(k).
a(n) = Sum_{k=0..floor((n-2)/2)} 2^(n-2)*(n-k-1)*binomial(n-2-k, k)*(1/4)^k, n >= 2.
From Wolfdieter Lang, Apr 11 2000: (Start)
a(n) = ((n-1)*P(n) + n*P(n-1))/4, P(n)=A000129(n).
G.f.: (x/(1 - 2*x - x^2))^2. (End)
a(n) = F'(n, 2), the derivative of the n-th Fibonacci polynomial evaluated at x=2. - T. D. Noe, Jan 19 2006

Extensions

Sum formulas and cross-references added by Wolfdieter Lang, Aug 07 2002