cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006668 Exponential self-convolution of Pell numbers (divided by 2).

Original entry on oeis.org

0, 0, 1, 6, 32, 160, 784, 3808, 18432, 89088, 430336, 2078208, 10035200, 48455680, 233967616, 1129701376, 5454692352, 26337607680, 127169265664, 614027624448, 2964787822592, 14315262312448, 69120201588736
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A084150. - Paul Barry, May 16 2003

Crossrefs

Programs

  • Magma
    [Floor(((2+Sqrt(8))^n+(2-Sqrt(8))^n-2^(n+1))/16): n in [0..30] ]; // Vincenzo Librandi, Aug 20 2011
  • Mathematica
    LinearRecurrence[{6,-4,-8},{0,0,1},30] (* Harvey P. Dale, Jul 15 2014 *)
    Table[2^(n-4)*(LucasL[n, 2] - 2), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 07 2016 *)

Formula

a(n) = ((2+sqrt(8))^n+(2-sqrt(8))^n-2^(n+1))/16; E.g.f. : exp(2x)(sinh(sqrt(2)x))^2/4=(exp(x)sinh(sqrt(2)x)/sqrt(2))^2/2. - Paul Barry, May 16 2003
G.f.: x^2/((1-2*x)*(1-4*x-4*x^2)). - Bruno Berselli, Aug 20 2011
a(n) = A006646(n)/2 = 2^(n-4)*(A002203(n) - 2). - Vladimir Reshetnikov, Oct 07 2016