cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A304321 Table of coefficients in row functions F'(n,x)/F(n,x) such that [x^k] exp( k^n * x ) / F(n,x) = 0 for k>=1 and n>=1.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 49, 148, 1, 1, 225, 6877, 3493, 1, 1, 961, 229000, 1854545, 106431, 1, 1, 3969, 6737401, 612243125, 807478656, 3950832, 1, 1, 16129, 188580028, 172342090401, 3367384031526, 514798204147, 172325014, 1, 1, 65025, 5170118437, 45770504571813, 11657788116175751, 33056423981177346, 451182323794896, 8617033285, 1
Offset: 1

Views

Author

Paul D. Hanna, May 11 2018

Keywords

Comments

Conjecture: T(n,k) in row n and column k gives the number of connected k-state finite automata with n inputs, for k>=0, for n>=1. For example, row 2 agrees with A006691, the number of connected n-state finite automata with 2 inputs; also, row 3 agrees with A006692, the number of connected n-state finite automata with 3 inputs.

Examples

			This table begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1, 9, 148, 3493, 106431, 3950832, 172325014, 8617033285, 485267003023, ...;
1, 49, 6877, 1854545, 807478656, 514798204147, 451182323794896, ...;
1, 225, 229000, 612243125, 3367384031526, 33056423981177346, ...;
1, 961, 6737401, 172342090401, 11657788116175751, 1722786509653595220757, ...;
1, 3969, 188580028, 45770504571813, 37854124915368647781, ...;
1, 16129, 5170118437, 11889402239702065, 120067639589726126102806, ...;
1, 65025, 140510362000, 3061712634885743125, 377436820462509018320487276, ...;
1, 261121, 3804508566001, 785701359968473902401, 1182303741240112494973150131501, ...; ...
Let F'(n,x)/F(n,x) denote the o.g.f. of row n of this table, then the coefficient of x^k in exp(k^n*x)/F(n,x) = 0 for k>=1 and n>=1.
		

Crossrefs

Cf. A304320, A304312 (row 2), A304313 (row 3), A304314 (row 4), A304315 (row 5).

Programs

  • Mathematica
    m = 10(*rows*);
    row[nn_] := Module[{F, s}, F = 1 + Sum[c[k] x^k, {k, m}]; s[n_] := Solve[ SeriesCoefficient[Exp[n^nn*x]/F, {x, 0, n}] == 0][[1]]; Do[F = F /. s[n], {n, m}]; CoefficientList[D[F, x]/F + O[x]^m, x]];
    T = Array[row, m];
    Table[T[[n-k+1, k]], {n, 1, m}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 27 2019 *)
  • PARI
    {T(n,k) = my(A=[1],m); for(i=0, k, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^n +x^2*O(x^m)) / Ser(A) )[m] ); L = Vec(Ser(A)'/Ser(A)); L[k+1]}
    /* Print table: */
    for(n=1,8, for(k=0,8, print1( T(n,k),", "));print(""))
    /* Print as a flattened table: */
    for(n=0,10, for(k=0,n, print1( T(n-k+1,k),", "));)

Formula

Row n of this table equals the logarithmic derivative of row n of table A304320.
For fixed row r > 1 is a(n) ~ sqrt(1-c) * r^(r*(n+1)) * n^((r-1)*n + r - 1/2) / (sqrt(2*Pi) * c^(n+1) * (r-c)^((r-1)*(n+1)) * exp((r-1)*n)), where c = -LambertW(-r*exp(-r)). - Vaclav Kotesovec, Aug 31 2020

A304313 Logarithmic derivative of F(x) that satisfies: [x^n] exp( n^3 * x ) / F(x) = 0 for n>0.

Original entry on oeis.org

1, 49, 6877, 1854545, 807478656, 514798204147, 451182323794896, 519961864703259753, 762210147961330421167, 1384945048774500147047194, 3055115321627096660341307614, 8043516699726480852467167758419, 24915939138210507189761922944830006, 89709850983809128394441772076036629240, 371523831948166269091257380175120352465872
Offset: 0

Views

Author

Paul D. Hanna, May 11 2018

Keywords

Comments

Is this sequence essentially the same as A006692?
Conjecture: a(n) is the number of connected n-state finite automata with 3 inputs (A006692).
Equals row 3 of table A304321.

Examples

			O.g.f.: L(x) = 1 + 49*x + 6877*x^2 + 1854545*x^3 + 807478656*x^4 + 514798204147*x^5 + 451182323794896*x^6 + 519961864703259753*x^7 + ...
such that L(x) = F'(x)/F(x) where F(x) is the o.g.f. of A304323 :
F(x) = 1 + x + 25*x^2 + 2317*x^3 + 466241*x^4 + 162016980*x^5 + 85975473871*x^6 + 64545532370208*x^7 + 65062315637060121*x^8 + ... + A304323(n)*x^n + ...
which satisfies [x^n] exp( n^3 * x ) / F(x) = 0 for n>0.
		

Crossrefs

Programs

  • Mathematica
    m = 25;
    F = 1 + Sum[c[k] x^k, {k, m}];
    s[n_] := Solve[SeriesCoefficient[Exp[n^3*x]/F, {x, 0, n}] == 0][[1]];
    Do[F = F /. s[n], {n, m}];
    CoefficientList[D[F, x]/F + O[x]^m, x] (* Jean-François Alcover, May 21 2018 *)
  • PARI
    {a(n) = my(A=[1],L); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^3 +x^2*O(x^m)) / Ser(A) )[m] ); L = Vec(Ser(A)'/Ser(A)); L[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

Logarithmic derivative of the o.g.f. of A304323.
For n>=1, a(n) = B_{n+1}((n+1)^3-0!*a(0),-1!*a(1),...,-(n-1)!*a(n-1),0) / n!, where B_{n+1}(...) is the (n+1)-st complete exponential Bell polynomial. - Max Alekseyev, Jun 18 2018
a(n) ~ sqrt(1-c) * 3^(3*(n+1)) * n^(2*n + 5/2) / (sqrt(2*Pi) * c^(n+1) * (3-c)^(2*(n+1)) * exp(2*n)), where c = -LambertW(-3*exp(-3)). - Vaclav Kotesovec, Aug 31 2020

A304323 O.g.f. A(x) satisfies: [x^n] exp( n^3 * x ) / A(x) = 0 for n>0.

Original entry on oeis.org

1, 1, 25, 2317, 466241, 162016980, 85975473871, 64545532370208, 65062315637060121, 84756897268784533255, 138581022247955235150982, 277878562828788369685779910, 670574499099019193091230751539, 1917288315895234006935990419270242, 6409780596355519454337664637246378856, 24774712941456386970945752104780461007848, 109632095120643795798521114315908854415860345
Offset: 0

Views

Author

Paul D. Hanna, May 11 2018

Keywords

Comments

It is conjectured that the coefficients of o.g.f. A(x) consist entirely of integers.
Equals row 3 of table A304320.
O.g.f. A(x) = 1/(1 - x*B(x)), where B(x) is the o.g.f. of A107675.
Logarithmic derivative of o.g.f. A(x), A'(x)/A(x), equals o.g.f. of A304312.
Conjecture: given o.g.f. A(x), the coefficient of x^n in A'(x)/A(x) is the number of connected n-state finite automata with 3 inputs (A006692).

Examples

			O.g.f.: A(x) = 1 + x + 25*x^2 + 2317*x^3 + 466241*x^4 + 162016980*x^5 + 85975473871*x^6 + 64545532370208*x^7 + 65062315637060121*x^8 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^3*x) / A(x) begins:
n=0: [1, -1, -48, -13608, -11065344, -19317285000, -61649646030720, ...];
n=1: [1, 0, -49, -13754, -11120067, -19372748284, -61765715993765, ...];
n=2: [1, 7, 0, -14440, -11517184, -19768841352, -62587640670464, ...];
n=3: [1, 26, 627, 0, -12292251, -20908064898, -64905483973113, ...];
n=4: [1, 63, 3920, 227032, 0, -22551552136, -69768485886848, ...];
n=5: [1, 124, 15327, 1874642, 213958781, 0, -75806801733845, ...];
n=6: [1, 215, 46176, 9893016, 2100211968, 416846973816, 0, ...];
n=7: [1, 342, 116915, 39937660, 13616254341, 4604681316698, 1458047845980391, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^3*x ) / A(x) = 0 for n>=0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304313:
A'(x)/A(x) = 1 + 49*x + 6877*x^2 + 1854545*x^3 + 807478656*x^4 + 514798204147*x^5 + 451182323794896*x^6 + 519961864703259753*x^7 + ... + A304313(n)*x^n +...
INVERT TRANSFORM.
1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A107675:
B(x) = 1 + 24*x + 2268*x^2 + 461056*x^3 + 160977375*x^4 + 85624508376*x^5 + 64363893844726*x^6 + ... + A107675(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^3 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

a(n) ~ sqrt(1-c) * 3^(3*n) * n^(2*n - 1/2) / (sqrt(2*Pi) * c^n * (3-c)^(2*n) * exp(2*n)), where c = -A226750 = -LambertW(-3*exp(-3)). - Vaclav Kotesovec, Aug 31 2020
Showing 1-3 of 3 results.