cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006712 Number of 3-edge-colored trivalent graphs with 2n labeled nodes.

Original entry on oeis.org

6, 480, 197820, 150474240, 208857587400, 471804812519040, 1625459273858019600, 8112729590064978278400, 56342429224416522460072800, 527075322501595757416502976000, 6466573585901882433727764077860800, 101749747195531624711768653503416320000
Offset: 2

Views

Author

Keywords

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006713 (for connected cases), A248361 (for the incorrect values). See also A002830, A002831, A005638.

Programs

  • PARI
    dpermcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=2*t*k;s+=2*t); s!/m}
    S(n,x)={vector(n, n, if(n>1, sum(k=0, n, binomial(2*n-k,k)*2*n/(2*n-k)*x^k), 0))}
    q(n,s)={my(t=0); if(n>1, forpart(p=n, t+=dpermcount(p)*prod(i=1, #p, s[p[i]]), [2,n])); t}
    a(n)={my(p=q(n,S(n,x))); sum(i=0, poldegree(p), polcoeff(p,n-i)*(-1)^(n-i)*(2*i)!/(2^i*i!))} \\ Andrew Howroyd, Dec 18 2017

Extensions

a(5)-a(6) corrected and a(7)-a(10) from Sean A. Irvine, Oct 05 2014
Terms a(11) and beyond from Andrew Howroyd, Dec 18 2017