cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A248361 Erroneous version of A006712.

Original entry on oeis.org

6, 480, 197820, 154103040, 215643443400
Offset: 2

Views

Author

Sean A. Irvine, Oct 05 2014

Keywords

Comments

Included in accordance with the OEIS policy of listing published but incorrect sequences, to serve as pointers to the correct entries.

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A002831 Number of 3-edge-colored connected trivalent graphs with 2n nodes.

Original entry on oeis.org

1, 4, 11, 60, 318, 2806, 29359, 396196, 6231794, 112137138, 2249479114, 49691965745, 1197158348160, 31230408793660, 876971159096883, 26374570956403684, 845812191249484022, 28812214090645864661, 1038982259432805270094, 39540452134474760212909
Offset: 1

Views

Author

Keywords

Comments

In a letter to N. J. A. Sloane dated Feb 04 1971 (see link), R. C. Read enclosed a table listing 14 sequences, all of which, he says, appeared in his 1958 Ph.D. thesis. The values he gave for terms a(5) and a(6) in the present sequence are apparently incorrect (the terms given here are correct; the incorrect terms are shown in A246598). - N. J. A. Sloane, Sep 08 2014
Comment from Max Alekseyev, Sep 09 2014: the relationship between "all graphs" and "connected graphs" is of course a version of the Euler transform - see for example the third formula in the Euler Transform link.
From Sasha Kolpakov, Dec 17 2017: (Start)
Number of oriented unrooted pavings (after Arques & Koch, Spehner, Lienhardt) with 2n darts.
Also the number of conjugacy classes of free index 2n subgroups in the free product Z_2*Z_2*Z_2. (End)

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002830 (for not-necessarily connected graphs), A006712, A006713.

Programs

  • Mathematica
    terms = 20;
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m];
    b[k_, q_] := If[OddQ[q], If[OddQ[k], 0, j = k/2; q^j (2 j)!/(j! 2^j)], Sum[ Binomial[k, 2 j] q^j (2 j)!/(j! 2^j), {j, 0, Quotient[k, 2]}]];
    pm[v_] := Module[{p = Total[x^v]}, Product[ b[Coefficient[p, x, i], i], {i, 1, Exponent[p, x]}]];
    a2830[n_] := Module[{s = 0}, Do[ s += permcount[p] pm[p]^3, {p, IntegerPartitions[2 n]}]; s/(2 n)!];
    G[x_] = 1 + Sum[a2830[n] x^n, {n, 1, terms+1}];
    gf = Sum[MoebiusMu[k] Log[G[x^k]]/k, {k, 1, terms+1}] + O[x]^(terms+1);
    CoefficientList[gf, x] // Rest (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)

Formula

G.f.: sum(mobius(k) * log(G(x^k)) / k, k >= 1) where G(x) is the g.f. for A002830. - Sean A. Irvine, Sep 09 2014
Asymptotics: a(n) ~ (2/Pi)^(1/2)*(2/e)^n*n^{n - 1/2}; cf. Ciobanu and Kolpakov in Links. - Sasha Kolpakov, Dec 17 2017

Extensions

a(5) and a(6) corrected and new terms a(7) and a(8) computed by Sean A. Irvine, Sep 09 2014
a(9)-a(10) from Sasha Kolpakov, Dec 11 2017
a(11) and beyond from Andrew Howroyd, Dec 14 2017

A006713 Number of 3-edge-colored connected trivalent graphs with 2n labeled nodes.

Original entry on oeis.org

6, 480, 196560, 149869440, 208166112000, 470619551001600, 1622357050938624000, 8100931274981056512000, 56279222605087617687552000, 526611567858781597240688640000, 6462027944190599588931310387200000, 101691538301880025620001692844032000000
Offset: 2

Views

Author

Keywords

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006712 (for not necessarily connected graphs), A248362 (for the incorrect values). See also A002830, A002831, A002851.

Extensions

a(5)-a(6) corrected and a(7)-a(10) from Sean A. Irvine, Oct 05 2014
Terms a(11) and beyond from Andrew Howroyd, Dec 18 2017

A002830 Number of 3-edge-colored trivalent graphs with 2n nodes.

Original entry on oeis.org

1, 1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330, 2403140605, 52655943500, 1260724587515, 32726520985365, 915263580719998, 27432853858637678, 877211481667946811, 29807483816421710806, 1072542780403547030073, 40739888428757581326987
Offset: 0

Views

Author

Keywords

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m];
    b[k_, q_] := If[OddQ[q], If[OddQ[k], 0, j = k/2; q^j (2 j)!/(j! 2^j)], Sum[ Binomial[k, 2 j] q^j (2 j)!/(j! 2^j), {j, 0, Quotient[k, 2]}]];
    pm[v_] := Module[{p = Total[x^v]}, Product[b[Coefficient[p, x, i], i], {i, 1, Exponent[p, x]}]];
    a[n_] := Module[{s = 0}, Do[s += permcount[p] pm[p]^3, {p, IntegerPartitions[2 n]}]; s/(2 n)!];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 30}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
  • PARI
    b(k,r) = {if(k%2, if(r%2, 0, my(j=r/2); k^j*(2*j)!/(j!*2^j)), sum(j=0, r\2, binomial(r, 2*j)*k^j*(2*j)!/(j!*2^j)))}
    g(n,k)={sum(r=0, n\k,  x^(k*r)*b(k,r)^3/(r!*k^r)) + O(x*x^n)}
    seq(n)={Vec(substpol(prod(k=1, 2*n, g(2*n,k)), x^2, x))} \\ Andrew Howroyd, Dec 14 2017; updated May 02 2023

Formula

G.f.: exp(Sum_{k >= 1} F(x^k) / k) where F(x) is the g.f. for A002831. - Sean A. Irvine, Sep 09 2014

Extensions

a(7)-a(8) from Sean A. Irvine, Sep 08 2014
Terms a(9) and beyond from Andrew Howroyd, Dec 14 2017
a(0)=1 prepended by Andrew Howroyd, May 02 2023

A054479 Number of sets of cycle graphs of 2n nodes where the 2-colored edges alternate colors.

Original entry on oeis.org

1, 0, 6, 120, 6300, 514080, 62785800, 10676746080, 2413521910800, 700039083744000, 253445583029839200, 112033456760809584000, 59382041886244720843200, 37175286835046004765120000, 27139206193305890195912400000, 22852066417535931447551359680000
Offset: 0

Views

Author

Christian G. Bower, Mar 29 2000

Keywords

Comments

Also number of permutations in the symmetric group S_2n in which cycle lengths are even and greater than 2, cf. A130915. - Vladeta Jovovic, Aug 25 2007
a(n) is also the number of ordered pairs of disjoint perfect matchings in the complete graph on 2n vertices. The sequence A006712 is the number of ordered triples of perfect matchings. - Matt Larson, Jul 23 2016

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-2*j)*binomial(n-1, 2*j-1)*(2*j-1)!, j=2..n/2))
        end:
    a:= n-> b(2*n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Mar 06 2023
  • Mathematica
    Table[(n-1)*(2*n)!^2 * HypergeometricPFQ[{2-n},{3/2-n},-1/2] / (4^n*(n-1/2)*(n!)^2), {n, 0, 20}] (* Vaclav Kotesovec, Mar 29 2014 after Mark van Hoeij *)
  • PARI
    x='x+O('x^66); v=Vec(serlaplace(1/(sqrt(exp(x^2)*(1-x^2))))); vector(#v\2,n,v[2*n-1]) \\ Joerg Arndt, May 13 2013

Formula

If b(2n)=a(n) then e.g.f. of b is 1/(sqrt(exp(x^2)*(1-x^2))).
a(n) = 4^n*(n-1)*gamma(n+1/2)^2*hypergeom([2-n],[3/2-n],-1/2)/(Pi*(n-1/2)). - Mark van Hoeij, May 13 2013
a(n) ~ 2^(2*n+1) * n^(2*n) / exp(2*n+1/2). - Vaclav Kotesovec, Mar 29 2014
Showing 1-5 of 5 results.