A006751 Describe the previous term! (method A - initial term is 2).
2, 12, 1112, 3112, 132112, 1113122112, 311311222112, 13211321322112, 1113122113121113222112, 31131122211311123113322112, 132113213221133112132123222112, 11131221131211132221232112111312111213322112, 31131122211311123113321112131221123113111231121123222112
Offset: 1
Examples
E.g. the term after 3112 is obtained by saying "one 3, two 1's, one 2", which gives 132112.
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4.
Links
- T. D. Noe, Table of n, a(n) for n=1..20
- J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.
- S. R. Finch, Conway's Constant [Broken link]
- S. R. Finch, Conway's Constant [From the Wayback Machine]
- Eric Weisstein's World of Mathematics, Look and Say Sequence
Crossrefs
Programs
-
Haskell
a006751 = foldl1 (\v d -> 10 * v + d) . map toInteger . a088203_row -- Reinhard Zumkeller, Aug 09 2012
-
Mathematica
RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[ n_ ] := LookAndSay[ n, 2 ][ [ n ] ]; Table[ FromDigits[ F[ n ] ], {n, 11} ] (* Zerinvary Lajos, Mar 21 2007 *)
-
Perl
# This outputs the first n elements of the sequence, where n is given on the command line. $s = 2; for (2..shift @ARGV) { print "$s, "; $s =~ s/(.)\1*/(length $&).$1/eg; } print "$s\n"; ## Arne 'Timwi' Heizmann (timwi(AT)gmx.net), Mar 12 2008
-
Python
l=[2] n=s=1 y='' while n<21: x=str(l[n - 1]) + ' ' for i in range(len(x) - 1): if x[i]==x[i + 1]: s+=1 else: y+=str(s)+str(x[i]) s=1 x='' n+=1 l.append(int(y)) y='' s=1 print(l) # Indranil Ghosh, Jul 05 2017
Formula
a(n+1) = A045918(a(n)). - Reinhard Zumkeller, Aug 09 2012
Comments