A006827 Number of partitions of 2n with all subsums different from n.
1, 2, 5, 8, 17, 24, 46, 64, 107, 147, 242, 302, 488, 629, 922, 1172, 1745, 2108, 3104, 3737, 5232, 6419, 8988, 10390, 14552, 17292, 23160, 27206, 36975, 41945, 57058, 65291, 85895, 99384, 130443, 145283, 193554, 218947, 281860, 316326, 413322, 454229, 594048
Offset: 1
Examples
From _Gus Wiseman_, Apr 19 2024: (Start) The a(1) = 1 through a(5) = 17 partitions (A = 10): (2) (4) (6) (8) (A) (31) (42) (53) (64) (51) (62) (73) (222) (71) (82) (411) (332) (91) (521) (433) (611) (442) (5111) (622) (631) (721) (811) (3331) (4222) (6211) (7111) (22222) (61111) (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..140 (terms 1..89 from Alois P. Heinz)
- P. Erdős, J. L. Nicolas and A. Sárközy, On the number of partitions of n without a given subsum (I), Discrete Math., 75 (1989), 155-166 = Annals Discrete Math. Vol. 43, Graph Theory and Combinatorics 1988, ed. B. Bollobas.
Crossrefs
Programs
-
Maple
b:= proc(n, i, s) option remember; `if`(0 in s or n in s, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, s)+ `if`(i<=n, b(n-i, i, select(y-> 0<=y and y<=n-i, map(x-> [x, x-i][], s))), 0)))) end: a:= n-> b(2*n, 2*n, {n}): seq(a(n), n=1..25); # Alois P. Heinz, Jul 10 2012
-
Mathematica
b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; a[n_] := b[2*n, 2*n, {n}]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Nov 12 2013, after Alois P. Heinz *)
-
Python
from itertools import combinations_with_replacement from collections import Counter from sympy import npartitions from sympy.utilities.iterables import partitions def A006827(n): return npartitions(n<<1)-len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)),2)}) # Chai Wah Wu, Sep 20 2023
Extensions
More terms from Don Reble, Nov 03 2001
More terms from Alois P. Heinz, Jul 10 2012
Comments