cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A321172 Triangle read by rows: T(m,n) = number of Hamiltonian cycles on m X n grid of points (m >= 2, 2 <= n <= m).

Original entry on oeis.org

1, 1, 0, 1, 2, 6, 1, 0, 14, 0, 1, 4, 37, 154, 1072, 1, 0, 92, 0, 5320, 0, 1, 8, 236, 1696, 32675, 301384, 4638576, 1, 0, 596, 0, 175294, 0, 49483138, 0, 1, 16, 1517, 18684, 1024028, 17066492, 681728204, 13916993782, 467260456608
Offset: 2

Views

Author

Robert FERREOL, Jan 10 2019

Keywords

Comments

Orientation of the path is not important; you can start going either clockwise or counterclockwise. Paths related by symmetries are considered distinct.
The m X n grid of points when drawn forms a (m-1) X (n-1) rectangle of cells, so m-1 and n-1 are sometimes used as indices instead of m and n (see, e. g., Kreweras' reference below).
These cycles are also called "closed non-intersecting rook's tours" on m X n chess board.

Examples

			T(5,4)=14 is illustrated in the links above.
Table starts:
=================================================================
m\n|  2    3      4       5         6           7            8
---|-------------------------------------------------------------
2  |  1    1      1       1         1           1            1
3  |  1    0      2       0         4           0            8
4  |  1    2      6      14        37          92          236
5  |  1    0     14       0       154           0         1696
6  |  1    4     37     154      1072        5320        32675
7  |  1    0     92       0      5320           0       301384
8  |  1    8    236    1696     32675      301384      4638576
The table is symmetric, so it is completely described by its lower-left half.
		

Crossrefs

Row/column k=4..12 are: (with interspersed zeros for odd k): A006864, A006865, A145401, A145416, A145418, A160149, A180504, A180505, A213813.
Cf. A003763 (bisection of main diagonal), A222200 (subdiagonal), A231829, A270273, A332307.
T(n,2n) gives A333864.

Programs

  • Python
    # Program due to Laurent Jouhet-Reverdy
    def cycle(m, n):
         if (m%2==1 and n%2==1): return 0
         grid = [[0]*n for _ in range(m)]
         grid[0][0] = 1; grid[1][0] = 1
         counter = [0]; stop = m*n-1
         def run(i, j, nb_points):
             for ni, nj in [(i-1, j), (i+1, j), (i, j+1), (i, j-1)] :
                 if  0<=ni<=m-1 and 0<=nj<=n-1 and grid[ni][nj]==0 and (ni,nj)!=(0,1):
                     grid[ni][nj] = 1
                     run(ni, nj, nb_points+1)
                     grid[ni][nj] = 0
                 elif (ni,nj)==(0,1) and nb_points==stop:
                     counter[0] += 1
         run(1, 0, 2)
         return counter[0]
    L=[];n=7#maximum for a time < 1 mn
    for i in range(2,n):
        for j in range(2,i+1):
           L.append(cycle(i,j))
    print(L)

Formula

T(m,n) = T(n,m).
T(2m+1,2n+1) = 0.
T(2n,2n) = A003763(n).
T(n,n+1) = T(n+1,n) = A222200(n).
G. functions , G_m(x)=Sum {n>=0} T(m,n-2)*x^n after Stoyan's link p. 18 :
G_2(x) = 1/(1-x) = 1+x+x^2+...
G_3(x) = 1/(1-2*x^2) = 1+2*x^2+4*x^4+...
G_4(x) = 1/(1-2*x-2*x^2+2*x^3-x^4) = 1+2*x+6*x^2+...
G_5(x) = (1+3*x^2)/(1-11*x^2-2*x^6) = 1+14*x^2+154*x^4+...

Extensions

More terms from Pontus von Brömssen, Feb 15 2021

A014585 Number of Hamiltonian paths in a 5 X n grid starting in the lower left corner and ending in the lower right.

Original entry on oeis.org

0, 0, 1, 4, 23, 86, 397, 1584, 6820, 28002, 117852, 488824, 2043133, 8502298, 35463855, 147729456, 615817511, 2566065066, 10694840588, 44568760860, 185743671308, 774073998864, 3225960662493, 13444082934608
Offset: 0

Views

Author

Keywords

Comments

The difference between A014584 and A014585 needs to be clarified. - N. J. A. Sloane, Feb 08 2013
The difference is that A014584 counts paths starting in the LL finishing in the UR. A014585 counts paths starting in the LL finishing the LR. - Ruben Zilibowitz, Jul 05 2015

Crossrefs

Formula

The reference gives a generating function.

Extensions

Definition clarified by Ruben Zilibowitz, Jul 05 2015

A181689 Number of maximal self-avoiding walks from NW to SW corners of a 5 X n grid.

Original entry on oeis.org

1, 0, 8, 0, 86, 0, 948, 0, 10444, 0, 115056, 0, 1267512, 0, 13963520, 0, 153828832, 0, 1694652176, 0, 18669100976, 0, 205667768400, 0, 2265734756752, 0, 24960420526224, 0, 274975961325264, 0, 3029267044091408, 0, 33371858326057936, 0, 367640393509287824, 0, 4050102862690348880, 0, 44617875206245953552, 0, 491531908055724064720, 0, 5414951194338345409680, 0, 59653698888134291413584, 0, 657173751585588653678864, 0, 7239741169830151881286864
Offset: 1

Views

Author

Sean A. Irvine, Nov 17 2010

Keywords

Comments

All even terms are 0.

Crossrefs

Programs

  • Magma
    I:=[1,0,8,0,86,0]; [n le 6 select I[n] else 11*Self(n-2)+2*Self(n-6): n in [1..50]]; // Wesley Ivan Hurt, Apr 10 2016
    
  • Maple
    A181689:=proc(n) option remember:
    if n mod 2 = 0 then 0 elif n=1 then 1 elif n=3 then 8 elif n=5 then 86 else 11*a(n-2)+2*a(n-6); fi; end: seq(A181689(n), n=1..50); # Wesley Ivan Hurt, Apr 10 2016
  • Mathematica
    CoefficientList[Series[(1 - 3*x^2 - 2*x^4)/(1 - 11*x^2 - 2*x^6), {x, 0, 50}], x] (* Wesley Ivan Hurt, Apr 10 2016 *)
  • PARI
    x='x+O('x^99); Vec(x*(1-3*x^2-2*x^4)/(1-11*x^2-2*x^6)) \\ Altug Alkan, Apr 11 2016

Formula

G.f.: x*(1 - 3*x^2 - 2*x^4)/(1 - 11*x^2 - 2*x^6).
a(n) = 11*a(n-2) + 2*a(n-6) for n>6. - Wesley Ivan Hurt, Apr 10 2016

A222195 Order of linear recurrence for number of Hamiltonian cycles in the graph P_n X P_{2k} (n odd) or P_n X P_k (n even), as a function of k.

Original entry on oeis.org

1, 4, 3, 14, 18, 66, 104, 346, 671, 2086, 4479, 13523
Offset: 3

Views

Author

N. J. A. Sloane, Feb 14 2013

Keywords

Crossrefs

Showing 1-4 of 4 results.