cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006883 Long period primes: the decimal expansion of 1/p has period p-1.

Original entry on oeis.org

2, 7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593, 619, 647, 659, 701, 709, 727, 743, 811, 821, 823, 857, 863
Offset: 1

Views

Author

Keywords

Comments

Also called full reptend primes or maximal period primes.
Also called golden primes or long primes.
Here, as opposed to A001913, 2 is a term, because the decimal expansion of 1/2 is 0.5000000000..., so it is periodic with period 1 and pattern 0. - Michel Marcus, Jun 06 2018

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed. New York: Dover, 1966, pages 65, 309.
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 161.
  • Carl Friedrich Gauss, "Disquisitiones Arithmeticae"
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 115.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 61.
  • D. H. Lehmer, A note on primitive roots, Scripta Mathematica, vol. 26 (1963), p. 117. [Gives some interesting information about the frequency of maximal period primes and discusses two freak cases.]
  • C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, pp. 56-58.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial term, identical to A001913.
Cf. A001122 (long period primes in binary).

Programs

  • Maple
    isA006883 := proc(p) if p = 2 then true; elif isprime(p) then RETURN( numtheory[order](10,p) = p-1) ; else false; fi; end: for i from 1 to 300 do p := ithprime(i) ; if isA006883(p) then printf("%d ",p) ; fi; od: # R. J. Mathar, Apr 01 2009
  • Mathematica
    f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 150]], f[ # ] == 1 &] (* Robert G. Wilson v, Sep 14 2004 *)
    maxPeriodQ[p_] := MultiplicativeOrder[10, p] == p-1; maxPeriodQ[2] = True; Select[ Prime[ Range[150]], maxPeriodQ] (* Jean-François Alcover, Jan 07 2013 *)
  • PARI
    print1(2);forprime(p=7,1e3,if(znorder(Mod(10,p))+1==p,print1(", "p))) \\ Charles R Greathouse IV, Feb 27 2011

Formula

From Gerard Schildberger, Jul 02 2005: (Start)
Emil Artin conjectured that the proportion of primes that belong to this sequence can be expressed as:
(2*1-1)(3*2-1)(5*4-1)(7*6-1)(11*10-1)(13*12-1)...
------------------------------------------------- = 0.373955813619202288...
(2*1)(3*2)(5*4)(7*6)(11*10)(13*12)...
(End)
This Artin's constant, Product_{p prime} (1-1/(p^2-p)), is referenced in A005596. - Robert FERREOL, Jun 05 2018

Extensions

More terms from James Sellers, Aug 21 2000
Additional comments from Jason Earls, Apr 06 2001