A006884 In the '3x+1' problem, these values for the starting value set new records for highest point of trajectory before reaching 1.
1, 2, 3, 7, 15, 27, 255, 447, 639, 703, 1819, 4255, 4591, 9663, 20895, 26623, 31911, 60975, 77671, 113383, 138367, 159487, 270271, 665215, 704511, 1042431, 1212415, 1441407, 1875711, 1988859, 2643183, 2684647, 3041127, 3873535, 4637979, 5656191
Offset: 1
References
- R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 96.
- D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- David Barina, Table of n, a(n) for n = 1..98 (terms 1..84 from T. D. Noe, terms 85..89 from N. J. A. Sloane).
- David Barina, Path records.
- David Barina, Improved verification limit for the convergence of the Collatz conjecture, J. Supercomputing (2025) Vol. 81, Art. No. 810. See p. 12.
- Brian Hayes, Computer Recreations: On the ups and downs of hailstone numbers, Scientific American, 250 (No. 1, 1984), pp. 10-16.
- J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.
- G. T. Leavens and M. Vermeulen, 3x+1 search problems, Computers and Mathematics with Applications, 24 (1992), 79-99.
- G. T. Leavens and M. Vermeulen, 3x+1 search programs, Computers and Mathematics with Applications, 24 (1992), 79-99. (Annotated scanned copy)
- Tomás Oliveira e Silva, Tables (gives many more terms).
- Eric Roosendaal, 3x+1 Path Records.
- Olivier Rozier and Claude Terracol, Paradoxical behavior in Collatz sequences, arXiv:2502.00948 [math.GM], 2025. See p. 15.
- Robert G. Wilson v, Letter to N. J. A. Sloane with attachments, Jan. 1989.
- Robert G. Wilson v, Tables of A6877, A6884, A6885, Jan. 1989.
- Index entries for sequences related to 3x+1 (or Collatz) problem
- Index entries for sequences from "Goedel, Escher, Bach"
Crossrefs
Programs
-
Haskell
a006884 n = a006884_list !! (n-1) a006884_list = f 1 0 a025586_list where f i r (x:xs) = if x > r then i : f (i + 1) x xs else f (i + 1) r xs -- Reinhard Zumkeller, May 11 2013
-
Mathematica
mcoll[n_]:=Max@@NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]; t={1,max=2}; Do[If[(y=mcoll[n])>max,max=y; AppendTo[t,n]],{n,3,705000,4}]; t (* Jayanta Basu, May 28 2013 *) DeleteDuplicates[Parallelize[Table[{n,Max[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]]},{n,57*10^5}]],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Apr 23 2023 *)
-
PARI
A025586(n)=my(r=n); while(n>2, if(n%2, n=3*n+1; if(n>r, r=n)); n>>=1); r r=0; for(n=1,1e6, t=A025586(n); if(t>r, r=t; print1(n", "))) \\ Charles R Greathouse IV, May 25 2016
Comments