A006891 Decimal expansion of Feigenbaum reduction parameter.
2, 5, 0, 2, 9, 0, 7, 8, 7, 5, 0, 9, 5, 8, 9, 2, 8, 2, 2, 2, 8, 3, 9, 0, 2, 8, 7, 3, 2, 1, 8, 2, 1, 5, 7, 8, 6, 3, 8, 1, 2, 7, 1, 3, 7, 6, 7, 2, 7, 1, 4, 9, 9, 7, 7, 3, 3, 6, 1, 9, 2, 0, 5, 6, 7, 7, 9, 2, 3, 5, 4, 6, 3, 1, 7, 9, 5, 9, 0, 2, 0, 6, 7, 0, 3, 2, 9, 9, 6, 4, 9, 7, 4, 6, 4, 3, 3, 8, 3, 4, 1, 2, 9, 5, 9
Offset: 1
Examples
2.502907875095892822283902873218215786381271376727149977336192056779235...
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 24.
- S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 65-76
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1018
- Keith Briggs, A precise calculation of the Feigenbaum constants, Math. Comp., 57 (1991), 435-439.
- Stuart Brorson, A High Precision Calculation of Feigenbaum's Alpha Using Julia, JuliaHub, 2017.
- B. Derrida, A. Gervois and Y. Pomeau, Universal metric properties of bifurcations, J. Phys. A 12 (1979), 269-296.
- Richard J. Mathar, Chebyshev series representation of Feigenbaum's period-doubling function, arXiv:1008.4608 [math.DS], 2010.
- Simon Plouffe, Feigenbaum constants
- Simon Plouffe, Plouffe's Inverter, Feigenbaum constants to 1018 decimal places
- Judi Anne Thurlby, Rigorous calculations of renormalisation fixed points and attractors, Ph. D. Thesis, Univ. Portsmouth, (England, 2021). 400 digits in Section 3.8.
- Eric Weisstein's World of Mathematics, Feigenbaum Constant
- Wikipedia, Feigenbaum constants.
Extensions
More terms from Simon Plouffe, Jan 06 2002