A006921 Diagonals of Pascal's triangle mod 2 interpreted as binary numbers.
1, 1, 3, 2, 7, 5, 13, 8, 29, 21, 55, 34, 115, 81, 209, 128, 465, 337, 883, 546, 1847, 1301, 3357, 2056, 7437, 5381, 14087, 8706, 29443, 20737, 53505, 32768, 119041, 86273, 226051, 139778, 472839, 333061, 859405, 526344, 1903901, 1377557, 3606327
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..1000
- B. R. Hodgson, Letter to N. J. A. Sloane, Oct. 1991
- B. R. Hodgson, On some number sequences related to the parity of binomial coefficients, Fib. Quart., 30 (1992), 35-47.
Crossrefs
Programs
-
Haskell
a006921 = sum . zipWith (*) a000079_list . map (flip mod 2) . reverse . a011973_row -- Reinhard Zumkeller, Jul 14 2015
-
Maple
b2:=(n,k)->binomial(n,k) mod 2; H:=n->add(b2(n-r,r)*2^( floor(n/2)-r ), r=0..floor(n/2)); [seq(H(n),n=0..30)]; # N. J. A. Sloane, Jul 14 2015
-
Python
def A006921(n): return sum(int(not r & ~(n-r))*2**(n//2-r) for r in range(n//2+1)) # Chai Wah Wu, Jun 20 2022
Formula
a(n) = Sum_{r=0..n/2} binomial(n-r,r){mod 2} * 2^(floor(n/2)-r). - _N. J. A. Sloane, Jul 14 2015