cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006921 Diagonals of Pascal's triangle mod 2 interpreted as binary numbers.

Original entry on oeis.org

1, 1, 3, 2, 7, 5, 13, 8, 29, 21, 55, 34, 115, 81, 209, 128, 465, 337, 883, 546, 1847, 1301, 3357, 2056, 7437, 5381, 14087, 8706, 29443, 20737, 53505, 32768, 119041, 86273, 226051, 139778, 472839, 333061, 859405, 526344, 1903901, 1377557, 3606327
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A011973, A000079, A047999 (SierpiƄski), A007318, A101624.
Cf. A257971 (first differences).

Programs

  • Haskell
    a006921 = sum . zipWith (*)
                    a000079_list . map (flip mod 2) . reverse . a011973_row
    -- Reinhard Zumkeller, Jul 14 2015
    
  • Maple
    b2:=(n,k)->binomial(n,k) mod 2;
    H:=n->add(b2(n-r,r)*2^( floor(n/2)-r ), r=0..floor(n/2));
    [seq(H(n),n=0..30)]; # N. J. A. Sloane, Jul 14 2015
  • Python
    def A006921(n): return sum(int(not r & ~(n-r))*2**(n//2-r) for r in range(n//2+1)) # Chai Wah Wu, Jun 20 2022

Formula

a(2*n) = A260022(n); a(2*n+1) = A168081(n+1). - Reinhard Zumkeller, Jul 14 2015
a(n) = Sum_{r=0..n/2} binomial(n-r,r){mod 2} * 2^(floor(n/2)-r). - _N. J. A. Sloane, Jul 14 2015