cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A257971 First differences of A006921.

Original entry on oeis.org

0, 2, -1, 5, -2, 8, -5, 21, -8, 34, -21, 81, -34, 128, -81, 337, -128, 546, -337, 1301, -546, 2056, -1301, 5381, -2056, 8706, -5381, 20737, -8706, 32768, -20737, 86273, -32768, 139778, -86273, 333061, -139778, 526344, -333061, 1377557, -526344, 2228770
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 14 2015

Keywords

Crossrefs

Programs

  • Haskell
    a257971 n = a257971_list !! n
    a257971_list = zipWith (-) (tail a006921_list) a006921_list
    
  • Python
    def A257971(n): return sum(int(not r & ~(n+2-r))*2**(n//2+1-r) for r in range(n//2+2)) if n & 1 else -sum(int(not r & ~(n-1-r))*2**(n//2-1-r) for r in range(n//2)) # Chai Wah Wu, Jun 20 2022

Formula

a(2*n) = - A168081(n), a(2*n+1) = A168081(n+2);
a(2*n+4) = - a(2*n+1).

A260022 A bisection of A006921.

Original entry on oeis.org

1, 3, 7, 13, 29, 55, 115, 209, 465, 883, 1847, 3357, 7437, 14087, 29443, 53505, 119041, 226051, 472839, 859405, 1903901, 3606327, 7537523, 13697489, 30474449, 57868403, 121045047, 220004381, 487391245, 923205639, 1929576451, 3506503681, 7801470977, 14814478339, 30987976711, 56321966093
Offset: 0

Views

Author

N. J. A. Sloane, Jul 14 2015

Keywords

Crossrefs

Programs

  • Haskell
    a260022 = a006921 . (* 2)  -- Reinhard Zumkeller, Jul 14 2015
    
  • Python
    def A260022(n): return sum(int(not r & ~(2*n-r))*2**(n-r) for r in range(n+1)) # Chai Wah Wu, Jun 20 2022

Formula

a(n) = A006921(2*n).

A101624 Stern-Jacobsthal numbers.

Original entry on oeis.org

1, 1, 3, 1, 7, 5, 11, 1, 23, 21, 59, 17, 103, 69, 139, 1, 279, 277, 827, 273, 1895, 1349, 2955, 257, 5655, 5141, 14395, 4113, 24679, 16453, 32907, 1, 65815, 65813, 197435, 65809, 460647, 329029, 723851, 65793, 1512983, 1381397, 3881019, 1118225
Offset: 0

Views

Author

Paul Barry, Dec 10 2004

Keywords

Comments

The Stern diatomic sequence A002487 could be called the Stern-Fibonacci sequence, since it is given by A002487(n) = Sum_{k=0..floor(n/2)} (binomial(n-k,k) mod 2), where F(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k,k). Now a(n) = Sum_{k=0..floor(n/2)} (binomial(n-k,k) mod 2)*2^k, where J(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*2^k, with J(n) = A001045(n), the Jacobsthal numbers. - Paul Barry, Sep 16 2015
These numbers seem to encode Stern (0, 1)-polynomials in their binary expansion. See Dilcher & Ericksen paper, especially Table 1 on page 79, page 5 in PDF. See A125184 (A260443) for another kind of Stern-polynomials, and also A177219 for a reference to maybe a third kind. - Antti Karttunen, Nov 01 2016

Crossrefs

Programs

  • Haskell
    a101624 = sum . zipWith (*) a000079_list . map (flip mod 2) . a011973_row
    -- Reinhard Zumkeller, Jul 14 2015
  • Python
    prpr = 1
    prev = 1
    print("1, 1", end=", ")
    for i in range(99):
        current = (prev)^(prpr*2)
        print(current, end=", ")
        prpr = prev
        prev = current
    # Alex Ratushnyak, Apr 14 2012
    
  • Python
    def A101624(n): return sum(int(not k & ~(n-k))*2**k for k in range(n//2+1)) # Chai Wah Wu, Jun 20 2022
    

Formula

a(n) = Sum_{k=0..floor(n/2)} (binomial(n-k, k) mod 2)*2^k.
a(2^n-1)=1, a(2*n) = 2*a(n-1) + a(n+1) = A099902(n); a(2*n+1) = A101625(n+1).
a(n) = Sum_{k=0..n} (binomial(k, n-k) mod 2)*2^(n-k). - Paul Barry, May 10 2005
a(n) = Sum_{k=0..n} A106344(n,k)*2^(n-k). - Philippe Deléham, Dec 18 2008
a(0)=1, a(1)=1, a(n) = a(n-1) XOR (a(n-2)*2), where XOR is the bitwise exclusive-OR operator. - Alex Ratushnyak, Apr 14 2012
A000120(a(n-1)) = A002487(n). - Karl-Heinz Hofmann, Jun 18 2025

A168081 Lucas sequence U_n(x,1) over the field GF(2)[x].

Original entry on oeis.org

0, 1, 2, 5, 8, 21, 34, 81, 128, 337, 546, 1301, 2056, 5381, 8706, 20737, 32768, 86273, 139778, 333061, 526344, 1377557, 2228770, 5308753, 8388736, 22085713, 35782690, 85262357, 134742024, 352649221, 570556418, 1359020033, 2147483648, 5653987329, 9160491010
Offset: 0

Views

Author

Max Alekseyev, Nov 18 2009

Keywords

Comments

The Lucas sequence U_n(x,1) over the field GF(2)={0,1} is: 0, 1, x, x^2+1, x^3, x^4+x^2+1, x^5+x, ... Numerical values are obtained evaluating these 01-polynomials at x=2 over the integers.
The counterpart sequence is V_n(x,1) = x*U_n(x,1) that implies identities like U_{2n}(x,1) = x*U_n(x,1)^2. - Max Alekseyev, Nov 19 2009
Also, Chebyshev polynomials of the second kind evaluated at x=1/2 (A049310) with the resulting coefficients taken modulo 2, and then evaluated at x=2. - Max Alekseyev, Jun 20 2025

Crossrefs

A bisection of A006921. Cf. A260022. - N. J. A. Sloane, Jul 14 2015
See also A257971, first differences of A006921. - Reinhard Zumkeller, Jul 14 2015

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<2, n, Bits[Xor](2*a(n-1), a(n-2)))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 16 2025
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = BitXor[2 a[n - 1], a[n - 2]]; Table[a@ n, {n, 0, 32}] (* Michael De Vlieger, Dec 11 2015 *)
  • PARI
    { a=0; b=1; for(n=1,50, c=bitxor(2*b,a); a=b; b=c; print1(c,", "); ); }
    
  • PARI
    { a168081(n) = subst(lift(polchebyshev(n-1,2,x/2)*Mod(1,2)),x,2); } \\ Max Alekseyev, Jun 20 2025
  • Python
    def A168081(n): return sum(int(not r & ~(2*n-1-r))*2**(n-1-r) for r in range(n)) # Chai Wah Wu, Jun 20 2022
    

Formula

For n>1, a(n) = (2*a(n-1)) XOR a(n-2).
a(n) = A248663(A206296(n)). - Antti Karttunen, Dec 11 2015
A000120(a(n)) = A002487(n). - Karl-Heinz Hofmann, Jun 16 2025
a(n) = Sum_{k=0..n} (A049310(n,k) mod 2) * 2^k. - Max Alekseyev, Jun 20 2025
Showing 1-4 of 4 results.