A006939 Chernoff sequence: a(n) = Product_{k=1..n} prime(k)^(n-k+1).
1, 2, 12, 360, 75600, 174636000, 5244319080000, 2677277333530800000, 25968760179275365452000000, 5793445238736255798985527240000000, 37481813439427687898244906452608585200000000, 7517370874372838151564668004911177464757864076000000000, 55784440720968513813368002533861454979548176771615744085560000000000
Offset: 0
Examples
a(4) = 360 because 2^3 * 3^2 * 5 = 1 * 2 * 6 * 30 = 360. a(5) = 75600 because 2^4 * 3^3 * 5^2 * 7 = 1 * 2 * 6 * 30 * 210 = 75600.
References
- Clifford A. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 351.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James K. Strayer, Elementary number theory, Waveland Press, Inc., Long Grove, IL, 1994. See p. 37.
Links
- T. D. Noe, Table of n, a(n) for n=0..25
Crossrefs
Cf. A000178 (product of first n factorials), A007489 (sum of first n factorials), A060389 (sum of first n primorials).
A000142 counts divisors of superprimorials.
A000325 counts uniform divisors of superprimorials.
A008302 counts divisors of superprimorials by bigomega.
A022915 counts permutations of prime indices of superprimorials.
A076954 is a sister-sequence.
A118914 has row a(n) equal to {1..n}.
A124010 has row a(n) equal to {n..1}.
A130091 lists numbers with distinct prime multiplicities.
A317829 counts factorizations of superprimorials.
A336417 counts perfect-power divisors of superprimorials.
A336426 gives non-products of superprimorials.
Programs
-
Haskell
a006939 n = a006939_list !! n a006939_list = scanl1 (*) a002110_list -- Reinhard Zumkeller, Jul 21 2012
-
Magma
[1] cat [(&*[NthPrime(k)^(n-k+1): k in [1..n]]): n in [1..15]]; // G. C. Greubel, Oct 14 2018
-
Maple
a := []; printlevel := -1; for k from 0 to 20 do a := [op(a),product(ithprime(i)^(k-i+1),i=1..k)] od; print(a);
-
Mathematica
Rest[FoldList[Times,1,FoldList[Times,1,Prime[Range[15]]]]] (* Harvey P. Dale, Jul 07 2011 *) Table[Times@@Table[Prime[i]^(n - i + 1), {i, n}], {n, 12}] (* Alonso del Arte, Sep 30 2011 *)
-
PARI
a(n)=prod(k=1,n,prime(k)^(n-k+1)) \\ Charles R Greathouse IV, Jul 25 2011
-
Python
from math import prod from sympy import prime def A006939(n): return prod(prime(k)**(n-k+1) for k in range(1,n+1)) # Chai Wah Wu, Aug 12 2025
Formula
a(n) = m(1)*m(2)*m(3)*...*m(n), where m(n) = n-th primorial number. - N. J. A. Sloane, Feb 20 2005
a(0) = 1, a(n) = a(n - 1)p(n)#, where p(n)# is the n-th primorial A002110(n) (the product of the first n primes). - Alonso del Arte, Sep 30 2011
log a(n) = n^2(log n + log log n - 3/2 + o(1))/2. - Charles R Greathouse IV, Mar 14 2011
A181796(a(n)) = A000110(n+1). It would be interesting to have a bijective proof of this theorem, which is stated at A181796 without proof. See also A336420. - Gus Wiseman, Aug 03 2020
Extensions
Corrected and extended by Labos Elemer, May 30 2001
Comments