A006946 Independence number of de Bruijn graph of order n on two symbols.
1, 2, 3, 7, 13, 28, 55, 114, 227, 466, 931, 1891, 3781
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Pontus von Brömssen, Maximum independent sets for de Bruijn graphs of order 8 to 13
- N. Lichiardopol, Independence number of de Bruijn graphs, Discrete Math., 306 (2006), no.12, 1145-1160. [Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 07 2010]
- Eric Weisstein's World of Mathematics, de Bruijn Graph
- Eric Weisstein's World of Mathematics, Independence Number
Programs
-
Mathematica
Length /@ Table[FindIndependentVertexSet[DeBruijnGraph[2, n]][[1]], {n, 6}]
-
Python
import networkx as nx def deBruijn(n): return nx.MultiDiGraph(((0, 0), (0, 0))) if n==0 else nx.line_graph(deBruijn(n-1)) def A006946(n): return nx.max_weight_clique(nx.complement(nx.Graph(deBruijn(n))),weight=None)[1] #Pontus von Brömssen, Mar 07 2020 (updated Nov 12 2023)
Extensions
a(7) from Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 07 2010
a(8) to a(13) from Pontus von Brömssen, Feb 29 2020
Comments