cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006962 Supersingular primes of the elliptic curve X_0 (11).

Original entry on oeis.org

2, 19, 29, 199, 569, 809, 1289, 1439, 2539, 3319, 3559, 3919, 5519, 9419, 9539, 9929, 11279, 11549, 13229, 14489, 17239, 18149, 18959, 19319, 22279, 24359, 27529, 28789, 32999, 33029, 36559, 42899, 45259, 46219, 49529, 51169, 52999, 55259
Offset: 1

Views

Author

Keywords

Comments

The primes for which A006571(p) == 0 (mod p) are called supersingular for the elliptic curve "11a3" and form sequence A006962. A prime p>2 is in A006962 if and only if A006571(p) = 0. - Michael Somos, Dec 25 2010

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006571.

Programs

  • Mathematica
    maxPi = 500; QP = QPochhammer; s = q*(QP[q]*QP[q^11])^2 + O[q]^(Prime[ maxPi] + 1); Reap[Do[If[Mod[SeriesCoefficient[s, p], p] == 0, Print[p]; Sow[p]], {p, Prime[Range[maxPi]]}]][[2, 1]] (* Jean-François Alcover, Nov 29 2015, adapted from PARI *)
  • PARI
    forprime(p=2, 2999, if(polcoeff(x * sqr(eta(x + O(x^p)) * eta(x^11 + O(x^p))), p)%p == 0, print1(p","))) /* Michael Somos, Dec 25 2010 */
    
  • PARI
    \\ gp -s 30G < A006962.gp
    { N = 10^8 + 2;
    default(seriesprecision,N);
    V = Vec((eta(q) * eta(q^11))^2);
    forprime(p=2,N, if( V[p]%p == 0, print1(p,", ") ) );
    } \\ Joerg Arndt, Sep 10 2016
    
  • Ruby
    require 'prime'
    def A006962(n)
      ary = []
      cnt = 1
      Prime.each(10 ** 7){|p|
        a = Array.new(p, 0)
        (0..p - 1).each{|i| a[(i * i) % p] += 1}
        s = 0
        (0..p - 1).each{|i|
          s += a[(i * i * i - 4 * i * i + 16) % p]
          break if s > p
        }
        if p == s
          ary << p
          cnt += 1
          return ary if cnt > n
        end
      }
    end # Seiichi Manyama, Sep 10 2016

Extensions

a(29)-a(38) from Michael Somos, Dec 25 2010