A006962 Supersingular primes of the elliptic curve X_0 (11).
2, 19, 29, 199, 569, 809, 1289, 1439, 2539, 3319, 3559, 3919, 5519, 9419, 9539, 9929, 11279, 11549, 13229, 14489, 17239, 18149, 18959, 19319, 22279, 24359, 27529, 28789, 32999, 33029, 36559, 42899, 45259, 46219, 49529, 51169, 52999, 55259
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Joerg Arndt, Table of n, a(n) for n = 1..747 (first 60 terms from Seiichi Manyama)
- S. Lang and H. F. Trotter, Frobenius Distribution in GL_2-Extensions Lect Notes Math. 504, 1976, see p. 267.
Crossrefs
Cf. A006571.
Programs
-
Mathematica
maxPi = 500; QP = QPochhammer; s = q*(QP[q]*QP[q^11])^2 + O[q]^(Prime[ maxPi] + 1); Reap[Do[If[Mod[SeriesCoefficient[s, p], p] == 0, Print[p]; Sow[p]], {p, Prime[Range[maxPi]]}]][[2, 1]] (* Jean-François Alcover, Nov 29 2015, adapted from PARI *)
-
PARI
forprime(p=2, 2999, if(polcoeff(x * sqr(eta(x + O(x^p)) * eta(x^11 + O(x^p))), p)%p == 0, print1(p","))) /* Michael Somos, Dec 25 2010 */
-
PARI
\\ gp -s 30G < A006962.gp { N = 10^8 + 2; default(seriesprecision,N); V = Vec((eta(q) * eta(q^11))^2); forprime(p=2,N, if( V[p]%p == 0, print1(p,", ") ) ); } \\ Joerg Arndt, Sep 10 2016
-
Ruby
require 'prime' def A006962(n) ary = [] cnt = 1 Prime.each(10 ** 7){|p| a = Array.new(p, 0) (0..p - 1).each{|i| a[(i * i) % p] += 1} s = 0 (0..p - 1).each{|i| s += a[(i * i * i - 4 * i * i + 16) % p] break if s > p } if p == s ary << p cnt += 1 return ary if cnt > n end } end # Seiichi Manyama, Sep 10 2016
Extensions
a(29)-a(38) from Michael Somos, Dec 25 2010
Comments