A006979 a(n) is the number of compositions of n in which the maximum part size is 5.
0, 0, 0, 0, 0, 1, 2, 5, 12, 28, 63, 139, 303, 653, 1394, 2953, 6215, 13008, 27095, 56201, 116143, 239231, 491326, 1006420, 2056633, 4193706, 8534653, 17337764, 35162804, 71205504, 143990366, 290795624, 586566102, 1181834852, 2378701408
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29.
Links
- Matthew House, Table of n, a(n) for n = 0..3390
- Index entries for linear recurrences with constant coefficients, signature (2,1,0,-1,-3,-4,-3,-2,-1).
Crossrefs
Cf. A048003.
Programs
-
Maple
a:= n-> (Matrix(9, (i,j)-> if i=j-1 then 1 elif j=1 then [2, 1, 0, -1, -3, -4, -3, -2, -1][i] else 0 fi)^n) [1,6]: seq(a(n), n=0..40); # Alois P. Heinz, Oct 29 2008
-
Mathematica
CoefficientList[Series[x^5/((1 - x - x^2 - x^3 - x^4) (1 - x - x^2 - x^3 - x^4 - x^5)), {x, 0, 34}], x] (* Michael De Vlieger, Feb 11 2017 *)
Formula
G.f.: x^5 / ((1-x-x^2-x^3-x^4)*(1-x-x^2-x^3-x^4-x^5)). - Alois P. Heinz, Oct 29 2008
Extensions
More terms and better definition from Alois P. Heinz, Oct 29 2008
Offset corrected by Matthew House, Feb 11 2017
Comments