A006987 Binomial coefficients: C(n,k), 2 <= k <= n-2, sorted, duplicates removed.
6, 10, 15, 20, 21, 28, 35, 36, 45, 55, 56, 66, 70, 78, 84, 91, 105, 120, 126, 136, 153, 165, 171, 190, 210, 220, 231, 252, 253, 276, 286, 300, 325, 330, 351, 364, 378, 406, 435, 455, 462, 465, 495, 496, 528, 560, 561, 595, 630, 666, 680, 703, 715, 741, 780, 792, 816, 820
Offset: 1
Keywords
Examples
Pascal's triangle (A007318) with the outer two layers removed: 6 10 10 15 20 15 21 35 35 21 28 56 70 56 28 36 84 126 126 84 36 ...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- R. G. Wilson v, Letter to N. J. A. Sloane, Nov. 1988
- R. G. Wilson v, Letter to N. J. A. Sloane, Jan. 1989
Programs
-
Mathematica
Take[ Union[ Flatten[ Table[ Binomial[n, k], {n, 2, 45}, {k, 2, n - 2}]]], 58] (* Robert G. Wilson v, May 25 2004 *)
-
PARI
list(lim)=my(v=List(), t); for(n=4, sqrtint(2*lim)+1, for(k=2, n\2, t=binomial(n, k); if(t>lim, break, listput(v, t)))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Apr 03 2012
Extensions
More terms from David W. Wilson
Spelling corrected by Jason G. Wurtzel, Aug 22 2010
Comments