cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007045 Second (lower) diagonal of partition triangle A047812.

Original entry on oeis.org

0, 1, 5, 20, 51, 112, 221, 411, 720, 1221, 2003, 3206, 5021, 7728, 11698, 17472, 25766, 37580, 54254, 77617, 110087, 154942, 216488, 300456, 414365, 568113, 774571, 1050572, 1417868, 1904641, 2547152, 3392042, 4498948, 5944158, 7824703, 10263932, 13418043, 17484554
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(n<0
          or t*i b((n-3)*(n+1), n$2):
    seq(a(n), n=2..40);  # Alois P. Heinz, May 31 2020
  • Mathematica
    s[n_] := s[n] = Series[Product[(1 - q^(2*n - k))/(1 - q^(k + 1)), {k, 0, n - 1}], {q, 0, n^2}]; t[n_, k_] := SeriesCoefficient[s[n], k*(n + 1)]; A007045 = Join[{0}, Table[t[n + 3, n], {n, 0, 25}] ] (* Jean-François Alcover, Apr 25 2012 *)
  • PARI
    T(n, k) = polcoeff(prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1)) ), k*(n+1) );
    for(n=3, 33, print1(T(n, n-3), ", ")) \\ Petros Hadjicostas, May 31 2020