A007090 Numbers in base 4.
0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, 100, 101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 123, 130, 131, 132, 133, 200, 201, 202, 203, 210, 211, 212, 213, 220, 221, 222, 223, 230, 231, 232, 233, 300, 301, 302, 303, 310, 311, 312, 313, 320, 321, 322, 323, 330, 331, 332, 333
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
- R. G. Wilson, V, Letter to N. J. A. Sloane, Sep. 1992
- Index entries for 10-automatic sequences.
Crossrefs
Programs
-
Haskell
a007090 0 = 0 a007090 n = 10 * a007090 n' + m where (n', m) = divMod n 4 -- Reinhard Zumkeller, Apr 08 2013, Aug 11 2011
-
Maple
A007090 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,4): return op(convert(l,base,10,10^nops(l))): end: seq(A007090(n),n=0..54); # Nathaniel Johnston, May 06 2011
-
Mathematica
Table[ FromDigits[ IntegerDigits[n, 4]], {n, 0, 60}]
-
PARI
a(n)=if(n<1,0,if(n%4,a(n-1)+1,10*a(n/4)))
-
PARI
A007090(n)=sum(i=1,#n=digits(n,4),n[i]*10^(#n-i)) \\ M. F. Hasler, Jul 25 2015 (Corrected by Jinyuan Wang, Oct 02 2019)
-
PARI
apply( A007090(n)=fromdigits(digits(n,4)), [0..66]) \\ M. F. Hasler, Nov 18 2019
Formula
a(n) = Sum_{d(i)*10^i: i=0, 1, ..., m}, where Sum_{d(i)*4^i: i=0, 1, ..., m} is the base 4 representation of n.
a(0) = 0, a(n) = 10*a(n/4) if n==0 (mod 4), a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002
Comments