cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007113 Expansion of e.g.f. (1 + x)^x.

Original entry on oeis.org

1, 0, 2, -3, 20, -90, 594, -4200, 34544, -316008, 3207240, -35699400, 432690312, -5672581200, 79991160144, -1207367605080, 19423062612480, -331770360922560, 5997105160795584, -114373526841360000, 2295170834453089920, -48344592370577247360
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.3.

Crossrefs

Cf. A053489, A053490. Apart from initial terms and signs, same as A066166.

Programs

  • Maple
    a:= n-> n! *coeff(series((1+x)^x, x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Dec 12 2012
  • Mathematica
    CoefficientList[Series[(1 + x)^x, {x, 0, 19}], x]*Table[(n - 1)!, {n, 1, 20}]
    a[n_] := (-1)^n*n!*Sum[ StirlingS1[n - k, k]/(n - k)!*(-1)^(n - 2*k), {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Dec 12 2012, after Vladeta Jovovic *)

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*k!*Stirling1(n-k, k). - Vladeta Jovovic, Dec 19 2004
a(n) ~ (-1)^n * n!. - Vaclav Kotesovec, Jun 06 2019

Extensions

Signs from Christian G. Bower, Nov 15 1998