cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007173 Number of simplicial 3-clusters with n cells.

Original entry on oeis.org

1, 1, 1, 4, 10, 40, 171, 831, 4147, 21822, 117062, 642600, 3582322, 20256885, 115888201, 669911568, 3907720521, 22979343010, 136107859377, 811430160282, 4866004426320, 29337068299728, 177738920836446, 1081668278379000, 6609923004626478, 40546403939165805
Offset: 1

Views

Author

Keywords

Comments

Also arises in enumeration of stereoisomers of alkane systems.
"A simplicial d-cluster may be informally described as being constructed by gluing regular d-simplexes together facet-by-facet, at each stage gluing a new simplex to exactly one facet of a cluster already constructed. The equivalence classes of such clusters under rigid motions are in one-to-one correspondence with the combinatorial types of stack polytopes." [Hering et al., 1982] - Jonathan Vos Post, Apr 22 2011
The Hering article has an error in the 14th term. - Robert A. Russell, Apr 11 2012
Also same as A027610 with mirror-image not treated as equivalence. - Brendan McKay, Mar 08 2014
Number of oriented polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Mar 20 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sum of achiral symmetry types (A047775, A047773, A047760, A047754, A047753, A047751, A047771, A047766 [type N], A047765, A047764) plus twice sum of chiral symmetry types (A047776, A047774, A047762, A047758, A047752, A047769, A047766 [type O]) in Beineke article.
Cf. A027610 (unoriented), A371350 (chiral), A371351 (achiral), A001764 (rooted), A001683(n+2) {3,oo}, A007175 {3,3,3,oo}.

Programs

  • Mathematica
    Table[Binomial[3 n, n]/(3 (2 n + 1) (2 n + 2)) + If[OddQ[n], Binomial[3 (n - 1)/2 + 1, n]/(n + 1), Binomial[3 n/2, n]/(n + 1)]/2 + 2 Switch[Mod[n, 3], 0, 0, 1, Binomial[n, (n - 1)/3]/n, 2, Binomial[n, (n - 2)/3]/n]/3, {n, 1, 30}] (* Robert A. Russell, Apr 11 2012 *)

Formula

From Robert A. Russell, Mar 20 2024: (Start)
a(n) = C(3n,n)/(3*(2n+1)*(2n+2)) + ([0==n mod 2]*C(3n/2,n) + [1==n mod 2]*C((3n-1)/2,(n-1)/2)) / (2n+2) + 2*([1==n mod 3]*C(n,(n-1)/3) + [2==n mod 3]*C(n,(n-2)/3)) / (3n).
a(n) = A027610(n) + A371350(n) = 2*A027610(n) - A371351(n) = 2*A371350(n) + A371351(n).
a(n) = H(3,n) in Table 8 of Hering link.
G.f.: (-8 + 4*G(z) - 2*G(z)^2 + z*G(z)^4 + 6*G(z^2) + 3z*G(z^2)^2 + 8z*G(z^3) + 4z^2*G(z^3)^2)/12, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. (End)

Extensions

a(14) corrected and additional terms from Robert A. Russell, Apr 11 2012