cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007202 Crystal ball sequence for hexagonal close-packing.

Original entry on oeis.org

1, 13, 57, 153, 323, 587, 967, 1483, 2157, 3009, 4061, 5333, 6847, 8623, 10683, 13047, 15737, 18773, 22177, 25969, 30171, 34803, 39887, 45443, 51493, 58057, 65157, 72813, 81047, 89879, 99331, 109423, 120177, 131613, 143753, 156617
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A007899.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    Table[Floor[(7((n+1)^4-n^4)+4)/8],{n,0,40}] (* or *) LinearRecurrence[ {3,-2,-2,3,-1},{1,13,57,153,323},40] (* Harvey P. Dale, Jul 15 2011 *)
  • PARI
    j=[]; for(n=0,75,j=concat(j,round((7/8)*((n+1)^4-n^4)))); j
    
  • Python
    def a(n): return round((7/8)*((n+1)**4-n**4))
    print([a(n) for n in range(36)]) # Michael S. Branicky, Jan 13 2021

Formula

Nearest integer to (7/8)*( (n+1)^4 - n^4 ).
G.f.: (x^4+10*x^3+20*x^2+10*x+1)/(x-1)^4/(x+1).
a(n) = 7*(2*n+1)*(2*n^2+2*n+1)/8 +(-1)^n/8. - R. J. Mathar, Mar 24 2011
a(0)=1, a(1)=13, a(2)=57, a(3)=153, a(4)=323, a(n)=3*a(n-1)- 2*a(n-2)- 2*a(n-3)+3*a(n-4)-a(n-5). - Harvey P. Dale, Jul 15 2011
E.g.f.: ((4 + 49*x + 63*x^2 + 14*x^3)*cosh(x) + (3 + 49*x + 63*x^2+ 14*x^3)*sinh(x))/4. - Stefano Spezia, Mar 14 2024

Extensions

More terms from Jason Earls, Jul 14 2001