cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007237 Number of triangles with integer sides and area = n times perimeter.

Original entry on oeis.org

5, 18, 45, 45, 52, 139, 80, 89, 184, 145, 103, 312, 96, 225, 379, 169, 116, 498, 123, 328, 560, 280, 134, 592, 228, 271, 452, 510, 134, 1036, 144, 280, 639, 339, 597, 1119, 139, 354, 635, 648, 162, 1486, 169, 594, 1215, 354, 186, 1066, 369, 622, 706, 597, 164
Offset: 1

Views

Author

Keywords

Examples

			For n=2, the a(2)=18 solutions whose area is twice its perimeter: (13,14,15) (12,16,20) (15,15,24) (10,24,26) (11,25,30) (18,20,34) (15,26,37) (14,30,40) (10,35,39) (9,40,41) (12,50,58) (33,34,65) (25,51,74) (9,75,78) (11,90,97) (21,85,104) (19,153,170) (18,289,305).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A120062.

Programs

  • PARI
    for(k=1,100, n=0; d=4*k^2; e=3*d; for(b=1,sqrt(e), for(c=2*k,e/b, if(b*c>d && c>=b, f = (b + c)*d / (b * c - d); if(f>=c, a=floor(f); if(a==f, n++))))); print1(n, ", "))
    
  • Python
    from math import sqrt, floor
    def A007237(n):
        ct = 0; k = 4*n*n
        for x in range(1, floor(2*sqrt(3)*n) + 1):
            for y in range(max(k//x + 1, x), floor((k+2*n*sqrt(k+x*x))/x)+1):
                if k*(x + y)%(x*y - k) == 0: ct += 1
        return ct  # Ya-Ping Lu, Dec 24 2023

Formula

a(n) = A120062(2n). - Ray Chandler, Jul 27 2017

Extensions

a(16)-a(50) from Les Reid, Jul 06 2010