A007237 Number of triangles with integer sides and area = n times perimeter.
5, 18, 45, 45, 52, 139, 80, 89, 184, 145, 103, 312, 96, 225, 379, 169, 116, 498, 123, 328, 560, 280, 134, 592, 228, 271, 452, 510, 134, 1036, 144, 280, 639, 339, 597, 1119, 139, 354, 635, 648, 162, 1486, 169, 594, 1215, 354, 186, 1066, 369, 622, 706, 597, 164
Offset: 1
Keywords
Examples
For n=2, the a(2)=18 solutions whose area is twice its perimeter: (13,14,15) (12,16,20) (15,15,24) (10,24,26) (11,25,30) (18,20,34) (15,26,37) (14,30,40) (10,35,39) (9,40,41) (12,50,58) (33,34,65) (25,51,74) (9,75,78) (11,90,97) (21,85,104) (19,153,170) (18,289,305).
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Ray Chandler, Table of n, a(n) for n = 1..5000 (first 300 terms from Zhining Yang)
- Lubomir Markov, Heronian Triangles Whose Areas Are Integer Multiples of Their Perimeters, Forum Geometricorum, Volume 7 (2007), 129-135.
- Juan V. Savall and Jesus Ferrer, Problem E3408, Amer. Math. Monthly, 99 (1992), 175-176.
Crossrefs
Cf. A120062.
Programs
-
PARI
for(k=1,100, n=0; d=4*k^2; e=3*d; for(b=1,sqrt(e), for(c=2*k,e/b, if(b*c>d && c>=b, f = (b + c)*d / (b * c - d); if(f>=c, a=floor(f); if(a==f, n++))))); print1(n, ", "))
-
Python
from math import sqrt, floor def A007237(n): ct = 0; k = 4*n*n for x in range(1, floor(2*sqrt(3)*n) + 1): for y in range(max(k//x + 1, x), floor((k+2*n*sqrt(k+x*x))/x)+1): if k*(x + y)%(x*y - k) == 0: ct += 1 return ct # Ya-Ping Lu, Dec 24 2023
Formula
a(n) = A120062(2n). - Ray Chandler, Jul 27 2017
Extensions
a(16)-a(50) from Les Reid, Jul 06 2010