A007259 Expansion of Product_{m>=1} (1 + q^m)^(-8).
1, -8, 28, -64, 134, -288, 568, -1024, 1809, -3152, 5316, -8704, 13990, -22208, 34696, -53248, 80724, -121240, 180068, -264448, 384940, -556064, 796760, -1132544, 1598789, -2243056, 3127360, -4333568, 5971922, -8188096, 11170160, -15163392, 20491033, -27572936
Offset: 0
Examples
1 - 8*x + 28*x^2 - 64*x^3 + 134*x^4 - 288*x^5 + 568*x^6 - 1024*x^7 + ... T6F = 1/q - 8q^2 + 28q^5 - 64q^8 + 134q^11 - 288q^14 + 568q^17 + ...
References
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 118, Problem 24.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Index entries for McKay-Thompson series for Monster simple group
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2]^8, {q, 0, n}] (* Michael Somos, Jul 11 2011 *) a[ n_] := SeriesCoefficient[ Product[ 1 - q^k, {k, 1, n, 2}]^8, {q, 0, n}] (* Michael Somos, Jul 11 2011 *) a[ n_] := SeriesCoefficient[ Product[ 1 + q^k, {k, n}]^-8, {q, 0, n}] (* Michael Somos, Jul 11 2011 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^8, n))}
Formula
Expansion of chi(-q)^8 in powers of q where chi() is a Ramanujan theta function. - Michael Somos, Aug 18 2007
Expansion of q^(-1/3) * (eta(q) / eta(q^2))^8 in powers of q. - Michael Somos, Aug 18 2007
Euler transform of period 2 sequence [ -8, 0, ...]. - Michael Somos, Aug 18 2007
Given g.f. A(x), then B(x) = A(x^3) / x satisfies 0 = f(B(x), B(x^2)) where f(u, v) = v^2 - u^2 * v - 16 * u. - Michael Somos, Aug 18 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 16 / f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 18 2007
G.f.: Product_{k>0} (1 + x^k)^(-8).
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(8/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 05 2017
G.f.: exp(-8*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
Comments